поисках оптимального решения мы забываем точно определить, что же именно следует оптимизировать. Нижненемецкая поговорка гласит: «Что подходит сове, то негоже соловью». На современный лад это звучит примерно так: «Если создать оптимальные условия для соловьев, каково придется совам!» (И наоборот!)

В нашей задаче об упаковке можно поставить множество вопросов, в зависимости от того, что же именно должно быть оптимальным:

1. Что дает наименьший расход упаковки при том же объеме содержимого? (Шар, куб.)

2. Какое тело легче всего получить из плоского листа путем простого складывания? (Пять Платоновых тел, то есть не шар!)

3. Какое тело при сборке имеет минимальную по длине соединительную полосу, которую можно склеить, сварить или соединить еще каким-то способом? (Тетраэдр.)

4. При выкройке какого тела получается минимум обрезков? (Тетраэдра.)

5. Какие тела можно сложить наиболее плотно, без просветов? (Куб, тетраэдр.)

6. У какого тела наименьшая вероятность «перепутать» грани в том случае, если оно должно лежать определенной стороной кверху (скажем, чтобы была видна маркировка)? (У тетраэдра, у него меньше всего граней.)

Из постановки этих шести вопросов нетрудно понять, как тщательно следует уточнять, что именно мы собираемся оптимизировать.

Если перед нами встанет задача разработать форму упаковки для грузов, предназначенных для пересылки самолетом, определяющими критериями оптимизации будут пункты 1 (маленький упаковочный формат) и 5 (плотная укладка без зазоров), так как при воздушных перевозках каждый грамм стоит дополнительных денег. Но при выборе тары для перевозки молока главную роль играет пункт 3 (наименьшая длина линии склейки) и даже еще более важную - пункт 4 (минимальные отходы). Сюда добавляются еще преимущества пунктов 5 (плотность укладки) и 6 (наименьшая вероятность уложить пакеты не той стороной).

Если объезжать этот 'узел' по стрелке, то б.уквы появятся один раз в 'непрямом' ряду и один раз - в прямом

Перед футурологами уже сегодня встает проблема: будем ли мы в 2000 г. покупать молоко в тетраэдрах или только в порошке, а может быть, нам снова придется возиться с молочными бидонами?

Однако в этой книге нас прежде всего интересуют вопросы, более близкие теме.

Право же, удивительно, что из пятиугольников тоже можно построить многогранник. А почему это невозможно из шестиугольников? Тем более что шестиугольник можно построить из шести треугольников?

Пятиугольники и шестиугольники нельзя уложить на плоскости без зазоров. Эти зазоры закрываются при образовании шара

Очевидно, дело тут не только в самой исходной плоской фигуре (треугольник, квадрат, пятиугольник), но и в том, как эти поверхности, примыкая, соединяются друг с другом. Если шестиугольники выложить на стол, станет ясно, что они покрывают плоскость без зазоров. Это свойственно также треугольникам и квадратам. А вот сложить из шестиугольников, не деформировав их, объемное тело, невозможно. Если все же попытаться с легким нажимом сделать такой многогранник из шестиугольников, его грани выгнутся и форма будет приближаться к шарообразной.

Шаровую конструкцию особого рода представляет собой футбольный мяч. Миллионы людей много раз в неделю видят этот мяч на экране телевизора. Сотни тысяч видят его «в натуре», на стадионе. Все знают, что покрышки мяча состоят из белых и черных фигурок. Но, как ни странно, лишь немногие могут с уверенностью сказать, из каких именно многоугольников он сделан. Даже футболисты колеблются, вспоминая, из пяти- или из шестиугольников. Это типичный пример нашей невнимательности в повседневной жизни.

Используя многоугольники разных видов, можно создать множество узоров для кафельного пола

Прежде кожаная покрышка делалась из двухконечных долек, подобных тем, которые надрезаются на апельсиновой кожуре. У большинства современных мячей покрышка состоит из изогнутых многоугольников. Она весит около 300 г при окружности мяча около 64 см и составляется из 12 черных и 20 белых «полей». Ребро каждого многоугольника независимо от числа его углов имеет в длину 4,3 см. Вокруг каждого черного пятиугольника располагается шесть белых шестиугольников.

Как уже говорилось, на плоскости шестиугольник, окруженный шестью другими шестиугольниками, образует мотив сплошного узора. Пятиугольник, окруженный пятью шестиугольниками, не заполняет всю плоскость без зазоров. Но если с некоторым усилием соединить такие многоугольники из кожи, получится (с весьма хорошим приближением) шар - наш футбольный мяч. Пространственно деформированные шестиугольники применяются и в строительстве при сооружении современных облегченных конструкций.

На рисунке показано 8 полурегулярных мотивов узора, каждый из которых включает два или больше различных типов правильных много угольников, соединенных углами или сторонами. В каждом углу сходится одинаковое число образующих узор многоугольников

Таким образом, из недеформированных плоских фигур одного типа и размера могут быть сложены только пять Платоновых тел.

Большие возможности для комбинаций из плоских фигур открываются при составлении узоров из кафельных плиток (например, на полу в ванной комнате). В них бесконечно повторяются мотивы из равносторонних треугольников, квадратов и шестиугольников. А вот с пятиугольными плитками плиточник едва ли смог бы что-нибудь сделать. Их невозможно сложить в подобный узор.

Особые свойства равностороннего или равнобедренного треугольника (ибо квадрат состоит из двух равнобедренных, а шестиугольник из шести равносторонних треугольников) связаны с суммой его углов, которая составляет 180°. Сумма углов всякого n-угольника равна (n - 2) • 180°. У пятиугольника она будет (5-2) • 180° = 540°. Разделив 540 на 5, мы получим для каждого угла 108°. В точках, где сходятся все плитки, сумма всех углов должна составлять 360°. Но из углов, равных 108°, невозможно составить суммарный угол в 360°!

На рисунке показано 8 полурегулярных мотивов узора, каждый из которых включает два или больше различных типов правильных много угольников, соединенных углами или сторонами. В каждом углу сходится одинаковое число образующих узор многоугольников

Мы уже говорили, что узор из плиток можно составить только в том случае, если взять правильные треугольники, квадраты и шестиугольники. Однако это справедливо лишь тогда, когда прикладывается сторона к стороне и угол к углу. Но эти три вида многоугольников обнаружат различия, как только мы изберем другой мотив узора для нашего пола. Квадраты и равносторонние треугольники будут заполнять всю плоскость и в том случае, если они не примыкают углом к углу. В мотиве, выложенном шестиугольниками, между примыкающими углами и сторонами образуются зазоры. Но сами эти зазоры способствуют созданию новых восхитительных узоров. Для шестиугольников существуют четыре мотива их сочетания в единый узор с треугольниками и квадратами.

Кроме того, известны еще две комбинации, в которых участвуют только квадраты и треугольники, и две, в которых плюс к тому используются еще и восьми-, и двенадцатиугольники. Созданием «узоров для кафеля» увлекались многие математики.

При выкладывании узоров из кафельных плиток нет границ для фантазии

Так, известно, что Иоганн Кеплер занимался составлением узора из шестиугольников, окруженных треугольниками. Любопытно, что этот узор (и только он) может иметь зеркально симметричное изображение. Остальные узоры в зеркале не меняются. Переворачивается только узор Кеплера.

Вы читаете Зеркальный мир
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату