укладке возрастает до 90,6%. Это плотнейшая из известных нам плоских укладок шаров или дисков. Иначе говоря, мы не можем разместить на плоскости шары, помидоры или монеты одного достоинства (то есть размера), не оставив незанятой ее часть, равную 9,4% всей площади. Тем не менее расположение в гнездах с использованием площади в 90,6% - большое достижение по сравнению с укладкой ровными одинаковыми рядами, где этот показатель составляет лишь 78,5%.
В торговых залах больших магазинов кассы обычно устанавливаются одна за другой в длинный ряд. В случае если они больше не в состоянии совладать с натиском покупателей, их располагают «лесенкой», так удается вместить еще одну или две кассы при той же ширине зала. Станки в токарных цехах в большинстве своем сразу устанавливаются в «промежутках», чтобы возможно лучше использовать рабочую площадь.
Особенно важное значение имеет рациональное использование площади в теплообменниках. Теплообменник состоит из труб (в которых проходит жидкость), вваренных в общее днище. Эти трубы омываются жидкостью иной температуры. При этом температуры жидкостей вне и внутри труб выравниваются. Так как размеры всякого агрегата всегда стремятся сократить, то и трубы в теплообменниках стараются укладывать наиплотнейшим образом.
Французский мыслитель и ученый Блез Паскаль (1623-1662) посвятил шаровым упаковкам целый трактат. Он задался целью с помощью фигур (составленных из шаров) придать числам зримую наглядность. Представьте, что наш продавец фруктов вслед за Паскалем сооружает пирамиду, скажем из апельсинов. У Паскаля такая пирамида из шаров делала «зримой» третью степень. Во фруктовом магазине апельсиновая гора предназначена, естественно, не для того, чтобы напоминать нам о математике. Но если вам случилось немного задержаться в очереди у прилавка, посмотрите, как это делается. Сначала продавец выкладывает квадрат. Затем, глядя на свое произведение, он задумывается. Вы, не удержавшись, спрашиваете, над чем он ломает голову. И узнаёте, что всего лишь над тем, как из апельсинов, лежащих в этом квадрате, построить четырехгранную пирамиду. «Ну, - заявляете вы, - это ведь не так трудно. Надо попробовать». «Я уже пробовал, - отвечает продавец. - С четырьмя апельсинами не выходит, с шестнадцатью тоже, и с двадцатью пятью ничего не получается». Удивившись, вы складываете квадрат 5Х5. Потом пробуете: 3Х3=9 - в качестве основания, 4 - во втором ряду, 1 апельсин как завершение - итого лишь 14 апельсинов вместо 25, заготовленных для пирамиды. Потом вы кладете 4Х4=16 в основание, 9 во второй ряд. Это уже 25, а пирамида еще не готова. Вами обоими овладевает азарт. Продажа апельсинов прекращается. Покупателям объявляют, что они должны «принести жертву» на алтарь науки. Вы систематически перебираете все числа-квадраты - 9, 16, 25, 36, 49 и т. д., пытаясь преобразовать их в пирамиду.
Наконец, либо на вас, либо на продавца нисходит то самое знаменитое «озарение»- одного из вас внезапно осеняет блестящая мысль пойти путем проб и ошибок. Вы теперь решаете задачу обратным путем, исходя не из подбора нужных размеров квадрата, а из наличия шаров - строите пирамиду сверху вниз (1, 4, 9 и т. д.) так долго, пока сумма всех использованных шаров не окажется квадратом какого-нибудь числа. Если у вас окажется под рукой карманный калькулятор, это не составит проблемы. Он быстро пересчитает вам по порядку все числа-квадраты в последовательных слоях: верхний слой 1, второй слой 4, третий слой 9 апельсинов и т. д. - и сложит результаты, то есть 1+4+9 и т. д. После каждого сложения он проверит, представляет ли собой полученное число квадрат. На 24-м слое окажется, что из 4900 апельсинов можно выложить квадрат 70Х70. Тем самым задача решена, и продавец может снять с двери табличку «Закрыто на приемку товара». Квадратное основание такой пирамиды составят 24Х24=576 апельсинов. «Давайте все же сложим маленькую пирамиду из апельсинов для витрины», - предлагает продавец. Вы с готовностью соглашаетесь и, усердно складывая апельсины, попутно объясняете продавцу, что не только в торговле возникают подобные проблемы, но, например, так же построены все кристаллы. Вам не удается закончить свои рассуждения, так как на третьем слое апельсинов, который вы с продавцом укладывали с двух сторон, узоры обеих укладок не сошлись. Решив обсудить эту проблему с продавцом, вы вконец расстроили бы торговлю. Но, может быть, вы уже поняли, в чем причина ошибки?
ПУТЬ К НОБЕЛЕВСКОЙ ПРЕМИИ
В одной из своих книг американский ученый Джеймс Д. Уотсон не без юмора и изрядной доли сарказма рассказывает о том, как он совместно с англичанами Френсисом Г. Криком и Морисом X. Ф. Уилкинсом открыл структуру генной спирали (носителя наследственности) (
Вы еще помните вопрос, заданный в конце предшествующего раздела: почему мотивы обоих рисунков в третьем слое не совпали? Очевидно, шары третьего слоя можно укладывать в промежутки между шарами второго слоя разными способами. Во втором слое имеются пустые гнезда, расположенные непосредственно над шарами первого слоя; обозначим их буквой А. Но есть и такие гнезда, под которыми шары отсутствуют; обозначим их буквой В. Через них сквозь оба слоя просматривается подложка.
Таким образом, при укладке шаров третьего слоя мы можем выбирать между гнездами А и В. Если положить шары в гнезда А, то есть над шарами первого слоя, и продолжать следовать этой схеме при укладке дальнейших слоев, то получится гексагональная (шестиугольная) структура. Но стоит нам предпочесть пустоты типа В, как возникает кубический мотив укладки.
Рассполагая достаточным запасом шаров, можно выкладывать попеременно один слой по схеме А, другой по схеме В. Только в пределах одного слоя нужно быть последовательным, выдерживая единую схему (любую из них), иначе рисунки укладки не совпадут между собой (