помогали занятия спортом, выступления за сборную команду МИФИ. Не обходилось и без «спорта сильных и смелых», как на условном языке именовался преферанс. Игра в карты строго преследовалась ректоратом, да и правители страны — по давней традиции, людишки недалекие — подражали вкусам Ленина, считавшего игру в карты предосудительной, но обожавшего шахматы.
Напряженность учебы несколько спала только через три года: в расписании появилось много специальных предметов, для студентов организовывали экскурсии по институтам Средмаша, которых было немало в Москве.
2.2. Уран, нейтроны мгновенные и запаздывающие, быстрые и тепловые
…Ядро урана содержит 92 положительно заряженных протона. Это — белый на свежем изломе металл, который на воздухе сначала покрывается налетом цвета спелой сливы, а затем и вовсе чернеет. Как и все тяжелые металлы, он вреден для человека. К тому же, уран распадается (правда очень медленно), испуская альфа — частицы (ядра гелия), но, если залить сто кусок прозрачным компаундом, получается вполне безопасный сувенир (рис. 2.1). Кроме протонов, ядро урана включает и нейтроны, число которых может быть различным: в природном уране большинство ядер содержат по 146 нейтронов и лишь 0,7 % — по 143 (ядра с другим числом нейтронов в естественных условиях чрезвычайно редки). Ядра с равными количествами протонов, но различными — нейтронов, называют изотопами. Химические свойства изотопов абсолютно идентичны, потому и разделить их химическими методами нельзя, но различие в массах (для «уранов» весьма незначительное: 235 и 238 единиц) — позволяет сделать это физическими методами. Чтобы объяснить, как это происходит, вспомним о запачканных штанах (или юбке). Попытка отмыть бензином или другим растворителем жирное пятно часто приводит к тому, что после высыхания растворителя на светлой материи остается отчетливо различимый круг (а то — и несколько, концентрических).
Все наверняка слышали о броуновском, хаотическом движении молекул, а многие — о том, что, при данной температуре, скорость Движения молекулы тем выше, чем меньше ее масса. Представим, что две емкости разделены перегородкой. В одной части находится чистый растворитель, а в другой — с примесями двух различных по молекулярным весам «загрязнений». Пока в «грязной» половине движение ограничено со всех сторон, обе компоненты равномерно перемешаны, поскольку их молекулы долго совершали хаотические броски, хотя и с разными скоростями. Если перегородку убрать, то «загрязнения» начнут переходить на «чистую половину». За достаточное время легкая компонента сделает больше «шажков» в «чистом» направлении, потому что скорость ее между столкновениями больше, за то же время она поучаствует в большем числе соударений и среди них — тех, что сообщат ей скорость в «чистую» сторону. Таким образом, «чистая» половина вначале окажется обогащенной легкой компонентой — до тех пор, пока молекулы легкой компоненты не «упрутся» в границы сосуда, бывшего ранее «чистым», а тяжелые молекулы не догонят легкие у его стенки. Если растворитель испаряется достаточно интенсивно, есть возможность соорудить нечто вроде фотофиниша: зафиксировать результат гонок молекул до того момента, когда обе компоненты достигнут границы «чистого» сосуда. Возьмите лупу и рассмотрите на ваших изгаженных штанах (хорошо, если они — белые, возможно, привезенные из Рио-де-Жанейро) результат этого драматического забега. В них произошло вот что: растворитель, благодаря капиллярным явлениям просачивался по тонким зазорам между ворсинками материи. Растворенные загрязнения вынуждены были пройти довольно большие расстояния по таким узкостям и легкие компоненты при этом опередили тяжелые. Потом испарение растворителя привело к консервации распределения. Это явление называют хроматографией. Его можно наблюдать и на фильтровальной бумаге, сначала капнув растворитель с загрязнениями, а потом — капая, в центр пятна чистый растворитель (рис. 2.2). Когда растворитель высохнет, можно, по концентрическим окружностям, определяющим границы разделенных зон, разрезать фильтровальную бумагу, став обладателем «обогащенных» различными компонентами кусочков.
В процессе разделения «уранов» есть много общего с хроматографией. Сначала их природную смесь переводят в газообразное состояние, соединяя с фтором, потом — прокачивают через бесчисленные пористые перегородки, так что молекулы гексафторида более легкого изотопа постепенно отделяются от тяжелых. Потом обогащенный легким изотопом газ собирают и вновь обращают в металл. Разделение идет весьма медленно, потому что массы, а значит, и скорости изотопов различаются незначительно.
Заводы, где из природного урана извлекают легкий изотоп стоят многие миллиарды долларов и занимают площади в десятки квадратных километров. На расходы идут потому, что, хотя «ураны» неотличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных «характеров».
Процесс деления U238 — «платный»: чтобы он начался, прилетающий извне нейтрон должен «принести» с собой энергию — МэВ[15] или более. A U235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре. При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10-23 — 10-22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2–3 в каждом акте деления, процесс этот вероятностный), так что со временем может «размножаться» и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U235, потому что «жадноватый» U238 не «желает» делиться от своих собственных нейтронов, энергия которых на порядок меньше МэВа. Кинетическая энергия частиц-продуктов деления на много порядков превышает выделение энергии при любом акте химической реакции, в которой состав ядер не меняется.
Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе — те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10-16 — 10-14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время после деления (до десятков секунд). Такие нейтроны называют запаздывающими и, хотя доля их по сравнению с мгновенными мала (менее процента), роль в работе ядерных установок — важнейшая.
Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми «барнами» (барн равен 10- 24 см2), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма-кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» го или иное ядро так же точно, как по отпечаткам пальцев — человека.
Образованные делением частицы при многочисленных столкновениях с окружающими атомами «отдают» им свою энергию, повышая, таким образом, температуру окружающего вещества. После того, как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Но критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости оттого, больше или меньше это число, большей или меньшей может быть и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» в критическую сборку дополнительные нейтроны