человеком. Период полураспада данного радиоактивного изотопа составляет 5568 лет. Это означает, что концентрация его в атмосфере и биосфере падала бы за это время вдвое, если бы не пополнялась новообразованными атомами.
Однако в соответствии с теорией это пополнение прекращается после гибели живого организма, что ведет к необратимому уменьшению концентрации С-14 в организме после смерти. И если в живом организме один атом С-14 приходится на 10 миллиардов обычных атомов углерода С-12, то в давно умершем — концентрация меньше, что дает возможность оценить дату смерти. А по ней — и время жизни. Либби разработал методику измерения и пересчета содержания изотопа, что привело к появлению радиоуглеродного метода определения возраста древних объектов.
Сегодня радиоуглеродный метод, претендующий на независимое датирование античных памятников, является весьма популярным. Однако по мере накопления радиоуглеродных дат вскрылись серьезнейшие трудности применения метода. В частности, как пишет А. Олейников, «пришлось задуматься еще над одной проблемой. Интенсивность излучений, пронизывающих атмосферу, изменяется в зависимости от многих космических причин. Стало быть, количество образующегося радиоактивного изотопа углерода должно колебаться во времени. Необходимо найти способ, который позволял бы их учитывать. Кроме того, в атмосферу непрерывно выбрасывается огромное количество углерода, образовавшегося за счет сжигания древесного топлива, каменного угля, нефти, торфа, горючих сланцев и продуктов их переработки. Какое влияние оказывает этот источник атмосферного углерода на повышение содержания радиоактивного изотопа? Для того чтобы добиться определения истинного возраста, придется рассчитывать сложные поправки, отражающие изменение состава атмосферы на протяжении последнего тысячелетия. Эти неясности наряду с некоторыми затруднениями технического характера породили сомнения в точности многих определений, выполненных углеродным методом».
Автор методики У Ф. Либби, не будучи историком, был абсолютно уверен в правильности скалигеровских датировок, и из его книги ясно, что именно по ним радиоуглеродный метод и был юстирован. Однако археолог Владимир Милойчич убедительно показал, что этот метод в его нынешнем состоянии дает хаотичные ошибки до 1000–2000 лет и в своей «независимой» датировке древних образцов излишне ориентирован на предлагаемые историками ответы.
У.Ф. Либби писал: «У нас не было расхождения с историками относительно Древнего Рима и Древнего Египта. Мы не проводили многочисленных определений по этой эпохе(!), так как в общем ее хронология известна археологии лучше, чем могли установить ее мы, и, предоставляя в наше распоряжение образцы (которые, кстати, уничтожаются, сжигаются в процессе радиоуглеродного измерения), археологи скорее оказывали нам услугу». Это признание Либби многозначительно, поскольку трудности скалигеровской хронологии обнаружены именно для тех регионов и эпох, по которым, как сообщил Либби, «многочисленных определений не проводилось». С тем же небольшим числом контрольных замеров по античности, которые все-таки были проведены, ситуация такова. При радиоуглеродном датировании, например, египетской коллекции Дж. X. Брэстеда «вдруг обнаружилось, — сообщает Либби, — что третий объект, который мы подвергли анализу, оказался современным! Это была одна из находок… которая считалась… принадлежащей династии (то есть 2563–2423 годы до н. э. — около 4 тысяч лет тому назад). Да, это был тяжелый удар». Впрочем, «выход» был тут же найден: объект был объявлен подлогом, поскольку ни у кого не возникло мысли усомниться в правильности скалигеровской хронологии Древнего Египта.
«В поддержку своего коренного допущения они (сторонники метода) приводят ряд косвенных доказательств, соображений и подсчетов, точность которых невысока, а трактовка неоднозначна, а главным доказательством служат контрольные радиоуглеродные определения образцов заранее известного возраста… Но как только заходит речь о контрольных датировках исторических предметов, все ссылаются на первые эксперименты, то есть на небольшую (!) серию образцов». Отсутствие, как признает и Либби, обширной контрольной статистики, да еще при наличии отмеченных выше многотысячелетних расхождений в датировках, «объясняемых» подлогами, — ставит под вопрос возможность применения метода в интересующем нас интервале времени. Это не относится к применениям метода для целей геологии, где ошибки в несколько тысяч лет несущественны.
У.Ф. Либби писал: «Однако мы не ощущали недостатка в материалах эпохи, отстоящей от нас на 3700 лет, на которых можно было бы проверить точность и надежность метода (однако здесь не с чем сравнить радиоуглеродные датировки, поскольку нет датированных письменных источников этих эпох)… Знакомые мне историки готовы поручиться за точность (датировок) в пределах последних 3750 лет, однако, когда речь заходит о более древних событиях, их уверенность пропадает».
Другими словами, радиоуглеродный метод был широко применен там, где полученные результаты трудно, даже практически невозможно проверить другими независимыми методами. «Некоторые археологи, не сомневаясь в научности принципов радиоуглеродного метода, высказали предположение, что в самом методе таится возможность значительных ошибок, вызываемых еще неизвестными эффектами». Но, может быть, эти ошибки все-таки невелики и не препятствуют хотя бы грубой датировке в интервале 2–3 тысяч лет «вниз» от нашего времени? Однако оказывается, что положение более серьезное. Ошибки слишком велики и хаотичны. Они могут достигать величины в 1–2 тысячи лет при датировке предметов нашего времени и Средних веков.
Радиоуглеродные даты внесли, как пишет Л.С. Клейн, «растерянность в ряды археологов. Одни с характерным преклонением… приняли указания физиков… Эти археологи поспешили перестроить хронологические схемы (которые, следовательно, не настолько прочно установлены?)… Первым из археологов против радиоуглеродного метода выступил Владимир Милойчич… который… не только обрушился на практическое применение радиоуглеродных датировок, но и… подверг жестокой критике сами теоретические предпосылки физического метода… Сопоставляя индивидуальные измерения современных образцов со средней цифрой — эталоном, Милойчич обосновывает свой скепсис серией блестящих парадоксов.
Раковина живущего американского моллюска с радиоактивностью 13,8, если сравнивать ее со средней цифрой как абсолютной нормой (15,3), оказывается уже сегодня (переводя на годы) в солидном возрасте — ей около 1200 лет! Цветущая дикая роза из Северной Африки (радиоактивность 14,7) для физиков «мертва» уже 360 лет… а австралийский эвкалипт, чья радиоактивность 16,31, для них еще «не существует» — он только будет существовать через 600 лет. Раковина из Флориды, у которой зафиксировано 17,4 распада в минуту на грамм углерода, «возникнет» лишь через 1080 лет…
Но так как и в прошлом радиоактивность не была распространена равномернее, чем сейчас, то аналогичные колебания и ошибки следует признать возможными и для древних объектов. И вот наглядные факты: радиоуглеродная датировка в Гейдельберге образца от средневекового алтаря… показала, что дерево, употребленное для починки алтаря, еще вовсе не росло!.. В пещере Вельт (Иран) нижележащие слои датированы 6054 (плюс-минус 415) и 6595 (плюс-минус 500) гг. до н. э., а вышележащий — 8610 (плюс-минус 610) гг. до н. э. Таким образом… получается обратная последовательность слоев и вышележащий оказывается на 2556 лет старше нижележащего! И подобным примерам нет числа…
Итак, радиоуглеродный метод датирования применим для грубой датировки лишь тех предметов, возраст которых составляет несколько десятков тысяч лет. Его ошибки при датировании образцов возраста в одну или две тысячи лет сравнимы с самим этим возрастом. То есть иногда достигают тысячи и более лет.
Вот еще несколько ярких примеров.
1. Живых моллюсков датировали, используя радиоуглеродный метод. Результаты анализа показали их