производители тоже не дураки, им разве трудно на свою чепуху правильную этикетку налепить? Это в Китае производителей поддельного детского питания приговорили к смертной казни, у нас же просто некая сумма зелени поменяет хозяина, и только. Ну, если совсем безденежная мелочь попадется, получит условный срок. Не спорю, возможны и исключения, но именно — исключения, фальсифицированные же продукты — правило. И потому, покупая банку бычков в томате, гадаешь: ты не смерть ли моя, ты не съешь ли меня — изнутри? Хлеб и шоколад, колбаса и водка, сыр и паштет, всё это одна большая загадка.
И потому я с волнением гляжу на наших олимпийцев. Не станет ли эта Олимпиада для нас Олимпиадой на постном масле? А следующая? Спортсмены, став олимпийцами, питаются хорошо, а прежде, в младенчестве, в детстве, в ранней юности? Деревенские ещё ничего, не выдадут, они от земли кормились, своя земля не обманет, а вот городские, дети гуманитарной помощи, которую распределили по киоскам да магазинам распределяющих? Тревожно как-то.
Правительство озаботилось фальсификацией истории, учредило комиссию по борьбе с ней — не с историей, само собой, а с фальсификацией. Они б сначала паленую водку победили! Коньяк пью только за границей, поскольку видел ослепших от палёного пойла людей. Юбилей, собрались, выпили. Те, кто пил мало, те и ослепли, а те, кто много, кто мешал коньяк с самогоном — как с гуся вода (научно объяснимый факт, этиловый спирт в процессе обмена нейтрализует метиловый). Думаете, кого-нибудь судили?
А ведь сколько шуму было — насчет водки-то! Чуть ли не со спутника за каждой бутылкой следить грозились, наладить учёт и контроль на уровне нано.
Может, и наладили, но учитывают то, что само хочет учитываться. А если где-то в сарайчике технический спирт разбавляют на глазок колодезной водой и разливают по бутылкам, тут разве спутник поможет? А если плохо с водкой, думаете, лучше с мармеладом? Та же отрава!
Умные люди, правда, стараются питаться правильно. Экологически чистым, натуральным продуктом. Заграничным. Поэтому и жить стараются там же, за границей. А если по должности, или по какой другой причине нельзя, устраивают заграницу здесь.
Говорят, на правительственных банкетах даже морошка, клюква и грузди — и те импортные. Проверить не могу, не зовут на банкеты.
Может, потому и не зовут, чтобы не выболтал Великую Тайну?
Кивино гнездо: Зелёный и тёплый
В то время как физики многих стран уже который год и не слишком успешно бьются над тем, чтобы построить эффективный квантовый компьютер при низких, криогенного уровня температурах, другие исследователи выбрали существенно иной путь. И ныне они уже практически уверены, что биологические организмы — в частности, растения, водоросли и бактерии — не только способны к выполнению квантовых вычислений, но и на протяжении миллиардов лет в процессе фотосинтеза делают это при максимально дружелюбной для жизни температуре.
Благодаря процессу фотосинтеза зелёные растения и сине-зелёные водоросли способны передавать солнечную энергию в центры молекулярных реакций для её преобразования в химическую энергию с почти 100-процентной эффективностью. Считается, что ключом тут является скорость — преобразование солнечной энергии происходит почти мгновенно, так что совсем малая её часть теряется на выделение тепла.
Но вот каким именно образом фотосинтез организует такую почти мгновенную передачу энергии — это очень давняя загадка, к решению которой физики начали всерьёз подступаться лишь в 2005–2007 годах. Исследования того периода, проведённые учёными Лоуренсовской лаборатории в Беркли (Berkeley Lab) и Калифорнийского университета в Беркли, продемонстрировали, что ответ, похоже, лежит в квантово-механических эффектах. А именно, было получено первое прямое свидетельство тому, что важную роль в процессах передачи энергии при фотосинтезе играет на удивление долго длящаяся волноподобная квантовая когерентность электронов в молекулах, поглощающих свет. Правда, поначалу продемонстрировать это удалось на образцах бактериохлорофилла, глубоко охлажденных до 77 градусов Кельвина (см. Nature 446, 782–786,12 April 2007)
Теперь же, в одном из последних выпусков журнала Nature, опубликована статья другой группы исследователей из Университета Торонто, Канада, которые показали, что участвующие в фотосинтезе молекулы морских водорослей для передачи световой энергии без потерь могут задействовать квантовые процессы и при комнатной температуре (см. Nature 463, 644–647, 4 February 2010). Вплоть до настоящего времени, можно напомнить, подавляющее большинство физиков исключает квантовые процессы в работе биологических организмов, настаивая, что при столь высоких температурах квантовые эффекты не могут сохраняться настолько долго, чтобы давать что-нибудь полезное для жизнеобеспечения.
Для понимания сути того, что сделали в канадском университете, понадобится немного углубиться в нюансы фотосинтеза. Данный процесс начинается в клетке тогда, когда крупные светособирающие структуры, именуемые антеннами, захватывают фотоны. Конкретно в водорослях Chroomonas CCMP270, изучавшихся биофизиками, эти антенны имеют восемь пигментных молекул, вплетенных в более крупную белковую структуру, причем разные пигменты абсорбируют свет из разных частей светового спектра. Затем энергия фотонов проходит через антенны к той части клетки, где она используется для выработки сахара — химического топлива организма.
Критично важным в данном процессе является маршрут, который выбирает энергия при своих прыжках через эти крупные молекулы, потому что чем длиннее маршрут, тем больше могут быть потери. В классической физике считается, что энергия может перемещаться по молекулам только случайным образом. Однако торонтские исследователи обнаружили, что в действительности механизм выбора маршрута для энергии может быть в высшей степени эффективным. А свидетельство тому дает согласованное поведение пигментных молекул в антеннах водорослей Chroomonas.
Сначала учёные коротким лазерным импульсом возбуждала две из этих молекул, из-за чего электроны в пигментных молекулах переходили в квантовую суперпозицию возбужденных состояний. Когда такая суперпозиция схлопывается (коллапсирует), то излучаются фотоны несколько иных длин волн, которые, с одной стороны, свидетельствуют о наличии квантового эффекта, а с другой, в свою очередь, накладываются друг на друга с образованием характерной интерференционной картины. Изучая именно эту структуру интерференции в излучаемом свете, исследователи смогли восстанавливать детали квантовой суперпозиции, которая порождает наблюдаемую картину.
Результаты данного анализа получились воистину удивительными. Оказалось, что в суперпозиции участвуют не только две пигментные молекулы в центре антенн, но также и шесть остальных пигментных молекул. Причем это состояние квантовой когерентности связывает все молекулы необычайно долго — на протяжении 400 фемтосекунд (4 Ч 10
Это открытие, надо повторить, опровергает некоторые давно устоявшиеся в квантовой механике воззрения, согласно которым квантовая когерентность не может появляться нигде, кроме криогенных температур, поскольку горячее окружение мгновенно разрушает хрупкий эффект. Тем не менее, нынешние опыты показывают, что в водорослях Chroomonas подобного рода эффекты идут постоянно при комнатной температуре — 21 градус по Цельсию.
По оценкам других специалистов, также разрабатывающих данное направление, сложность эксперимента, поставленного в Торонто, чрезвычайно высока. Аналогичный результат, полученный в Калифорнийском университете в Беркли в 2007 году, удалось продемонстрировать лишь при температуре минус 196 градусов по Цельсию. Там учёные исследовали бактериохлорофилловый комплекс в зелёных серных бактериях и тоже обнаружили, что пигментные молекулы похожим образом объединяются вместе в квантово-механическую сеть с когерентными состояниями. В итоге же ныне исследователи считают допустимым говорить, что в определённом смысле антенны растений и бактерий выполняют процедуры квантовых вычислений для отыскания наилучших путей передачи энергии.
Сейчас один из ведущих авторов калифорнийской команды, Грег Инджел (Greg Engel), продолжает исследования в Чикагском университете, где похожий по сути эксперимент тоже удалось воспроизвести при значительно более дружественной к жизни температуре 4 °C. Длительность когерентности у этой команды составляет 300 фемтосекунд (см. arxiv.org/abs/1001.5108v1).
Каким именно образом эти молекулы остаются когерентными в течение столь продолжительного по квантовым масштабам времени при столь высоких температурах, да ещё при относительно огромных расстояниях между молекулами — всё это пока остается большими загадками. На данный момент среди исследователей, занимающихся данной областью, преобладает точка зрения, согласно которой ключевую роль в обеспечении всего процесса играют белковые структуры, в которые вплетены пигменты. Хотя бы уже потому, что без этих структур никакой когерентности не получается.
Ну а что можно сказать о практических приложениях открытия? В первую очередь, высказывается надежда, что глубокое понимание квантовой когерентности в биологических клетках помогло бы при создании более эффективных солнечных элементов питания. А кроме того, если посмотреть чуть пошире и вспомнить, что и в мозге человека целый ряд учёных уже давно усматривает признаки работы квантового компьютера, то есть шанс на этом пути узнать побольше и о тайнах сознания.
Навигационно-коммунальный замес. Часть 1. Коммунальная квартира
Телеком-рынок в плане отношений между людьми и компаниями в последнее время начинает напоминать коммунальную квартиру. Все друг друга знают, все пользуются одним коридором и одним очком в туалете, но, при этом, по сценариям развития интриг между соседями-соквартирниками можно снимать шедевральные боевики с размашистым бюджетом. Цепляет в самом начале и не отпускает до самого конца.
Вот на кухне рафинированный интеллектуал-энциклопедист (Муртазин) обсуждает с душой компании и добряком-соседом (Колей) с какой стороны