продукт не традиционного, а развивающегося общества. Хочет население иметь её – должно заботиться о развитии. О привлечении современных, прежде всего информационных, технологий, в такую традиционную сферу, как торговля. Для того, чтобы снизить стоимость товаров на территории страны. Без этого все вложения и в компьютеризованное медицинское оборудование, и в передовые производственные процессы будут бесполезны. Работать со всем этим будет некому – способные люди утекут туда где, как минимум, цены ниже. Нет, конечно, возможен институт крепостных анестезиологов (и лиц других профессий). И ещё есть анестезия традиционная. Нет, нет, губки с цикутой, мандрагорой, опиумом и коноплей всё равно требовали немалого искусства в применении – хотя население стран с благодатным теплым климатом расти начало тогда, когда туда пришла европейская научная медицина. Но вот в осьмнадцатом веке, когда после схваток королевских фрегатов хирург отрезал марсовому конечность, к нему звали ассистировать плотника. Он человеколюбиво отвлекался от починки стоячего такелажа, прибегал с киянкой и... Так что альтернатива внедрению новых технологий в логистику есть!

К оглавлению

Интерактив

Юрий Тихонов (ИЯФ СО РАН) о Большом адронном коллайдере

Алла Аршинова

Опубликовано 26 августа 2010 года

С момента появления в прессе первых сообщений о Большом адронном коллайдере (Large Hadron Collider, далее — LHC) прошло немало времени. С большим трудом мы, наконец, осознали, что «адская машина» не приведет к Большому взрыву и не спровоцирует конец света. Теперь мы знаем, кто такой Питер Хиггс, и что частица, названная его именем, действительно важна для понимания устройства мира. Но осознание того, как частица, которую никто и никогда не наблюдал, может «одевать» другие частицы массой, и как её наблюдение поможет разобраться с такими глобальными задачами, как, например, подтверждение Стандартной модели, есть не у всех. Тем более не ясно, как LHC расставит точки над i в теориях, объясняющих происхождение мира. За популярными ответами на эти и другие вопросы мы обратились к Юрию Тихонову, заместителю директора по научной работе Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН).

- Юрий Анатольевич, расскажите, пожалуйста, о сотрудничестве ИЯФ СО РАН и CERN.

- Институт ядерной физики начал сотрудничать с CERN ещё задолго до появления Большого адронного коллайдера. Наши физики участвовали в нескольких экспериментах и ускорительных проектах. С началом строительства LHC (90-е годы) масштаб сотрудничества резко увеличился. Мы участвовали в разработке, изготовлении и запуске многих элементов ускорителя LHC. Как известно, основной задачей LHC является проведение экспериментов по физике элементарных частиц, для чего, кроме самого ускорителя, необходимы сложнейшие установки – детекторы частиц. Вторым направлением сотрудничества было участие в создании детекторов для экспериментов на LHC. ИЯФ внес большой вклад в разработку и строительство детектора ATLAS. ATLAS – самая большая и сложная установка для исследований по физике элементарных частиц, около 130 институтов из 40 стран участвовали в её строительстве. Физики ИЯФ предложили новый подход в создании калориметра на жидком аргоне, и этот проект был принят коллаборацией ATLAS. Всего за 10 лет в ИЯФ было разработано и изготовлено принципиально нового высокотехнологичного ускорительного и детекторного оборудования на сумму около 200 млн. долларов США. Следует отметить, что для изготовления оборудования привлекался ряд заводов России. В настоящее время физики ИЯФ успешно ведут эксперименты с детектором ATLAS. ИЯФ также участвует в экспериментах на детекторе LHCb, целью которых является изучение физики В-мезонов, в то время как ATLAS — универсальный детектор для исследования большого количества процессов.

- Что такое механизм Энглера-Браута-Хиггса и частица Хиггса?

- Начнем с простых вещей. Что такое взаимодействие? Все прекрасно знают, что Луна притягивается к Земле, а Земля к Солнцу. Это гравитационное взаимодействие. Также мы знаем электрическое (электромагнитное) взаимодействие: одноименные заряды отталкиваются, разноименные притягиваются. Путем многолетних исследований было осознано, что переносчиком этого взаимодействия являются безмассовые частицы — фотоны. Но в процессе развития физики выяснилось, что есть и другие типы взаимодействий.

Физика элементарных частиц — это не оторванная или абстрактная наука, это наше желание осознать устройство мира. Человек любопытен, и одно из его основных желаний на протяжении веков — понять, как все устроено. В детстве мы ломаем игрушки и разрезаем яблоко, чтобы узнать, что внутри. А потом, переходя к меньшим масштабам, мы уходим в мир элементарных частиц и хотим найти самый маленький кирпичик, из которого состоят все другие частицы.

Итак, развитие физики привело к тому, что были открыты четыре фундаментальных взаимодействия: сначала гравитационное и электромагнитное, которые определяют нашу повседневную жизнь, потом было осознано, что есть силы, связанные со строением ядра (это сильные взаимодействия). Было также понято, что есть и слабое взаимодействие, объясняющее распад нейтрона. С повышением энергии роль слабого взаимодействия растет, условно оно становится сильнее, а электромагнитное — слабее.

Было доказано, что эти взаимодействия между собой очень сильно связаны. Их объединение и привело к появлению электрослабой или Стандартной модели. Слово «Стандартная» появилось случайно, это означает, на мой взгляд, что это устоявшаяся красивая теория. Попытки объединения электрических и слабых сил были очень продуктивны, но в любой теории есть свои вопросы. Чтобы она была самосогласованной, и в ней не было внутренних противоречий, потребовалось ввести ещё одно поле — скалярное, или Хиггсовское, которое взаимодействует и с электромагнитным, и со слабым полем. С ним электрослабая модель становится согласованной, в ней исчезают расходимости, и это само по себе — большое достижение теории.

Тем не менее, электрослабая модель в её первоначальном виде не отвечала на очень важные вопросы. Откуда берется масса? Почему некоторые частицы являются безмассовыми? Почему массы такие разные? Есть, например, электрон, у которого масса всего лишь половина 1 МэВ, есть пи-мезон, масса которого около 130 МэВ, есть W-бозон, переносчик слабого взаимодействия, его масса 100 ГэВ. Это колоссальный масштаб различия масс, что тоже само по себе уникальное явление! Надеясь ответить на эти

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату