часто бывает так, что эта приостановка жизненных процессов является обратимой. В этом явлении для нас обнаруживается фортель, или выкрутас, благодаря которому гомеостат для данной среды как бы субминимален, поскольку обитает в этой среде и вместо того чтобы противопоставлять разнообразие – разнообразию, на некоторое время перестает быть гомеостатом. Технолог не может оценить такой маневр отрицательно, потому что сам был бы рад применить этот фортель. Если самолет попадает в аварию, то для него хорошо бы было хоть на миг получить «форму выживаемости», например, приземляясь на парашюте; то же, что так не происходит, обусловлено техническими сложностями проекта, а не технологическими указаниями осуществления процесса. Действительно: человека, который в тяжелые времена, вместо того чтобы бороться с трудностями вместе с современниками, прячется в холодильник, чтобы там в состоянии «обратимой смерти» эти времена переждать – такого человека легко назвать оппортунистом. Но речь также идет об оценке поведения в сопоставлении с культурными нормами, которое не совпадает с инструментальной оценкой. Ведь, как говорится в Писании, живой заяц лучше дохлого льва.
Поскольку не существует такого организма, который бы смог справиться со всеми возможными помехами, аварийная способность обратимого умирания стала бы благом для всех вообще форм жизни, и если эволюция не реализовала ее повсеместно, то из-за огромных трудностей, возникающих при решении этой задачи, на которую покушаются постоянно медицина с биологией. (Искусственная гипотермия имеет своим аналогом естественный зимний сон ряда млекопитающих, но нет природного аналога для обратимой смерти, произведенной заморозкой, о которой мечтает биотехнолог.)
Итак, эволюция создает «субминимальные» гомеостаты, но производит также и гомеостаты «избыточные» – их, как правило, называют «прогрессивными» формами. Ведь эволюция представляет собой игру, усложняющуюся в ходе самой себя, в том числе, и благодаря тому, что правила этой игры, вначале ограниченные отношениями между организмами и средой, обрастают правилами, возникающими из отношений между организмами (одного, а потом и разных видов). Задачи передвижения достаточно просты, когда инфузорию-вегетарианца преследует инфузория-хищник, и они усложняются, когда лев гонит антилопу. Но обе эти задачи попросту несравниваемы; они также не годятся для сравнения, если льва с антилопой мы заменим щукой и лещом. Все это – решения гомеостатических задач для неодинаково избыточных уровней гомеостаза.
Если можно так сказать, эволюционный прогресс, будучи реальным, не является рациональным – с любой технологической точки зрения, ориентированной на гомеостаз в живой природе. Потому что технолог считает, что поставленную задачу следует решать наиболее простым способом, не множа сверх необходимости «конструктивных состояний». Если мы находимся в Европе, а наша цель расположена в Америке, то, разумеется, любое транспортное средство, которое переносит нас из Европы в Америку быстрее, чем использовавшееся ранее, является решением транспортной проблемы как рациональным, так и более прогрессивным. Потому что недостижимым идеалом для передвижения является мгновенное перемещение, то есть такое, которое вообще не нуждается во времени, и оно венчает шкалу усовершенствований. Но если задача состоит в том, чтобы создать гомеостат, то нет причины, ради которой следовало бы этот гомеостат все более и более усложнять; если бы было так, что увеличение сложности приближало бы нас к упомянутому выше пределу шкалы, который представляет собой «идеальный гомеостат», то усложняющие действия были бы оправданы усилением гомеостатических свойств и приближали бы к этому совершенному состоянию, заслуживая тем самым технологического одобрения, и таким образом эти действия оказались бы подчинены выводимой из технологии инструментальной аксиометрии. Но не так все происходит. Потому что ложно утверждение, что якобы высшие организмы как гомеостаты действительно лучше функционируют, чем низшие, и неправда, что увеличение сложности обозначало бы прогресс в направлении «идеального гомеостата». Разница между муравьем и антилопой – это разница между шашками и шахматами, а не между велосипедом и самолетом. Потому что последняя является разницей между функциями, в принципе предназначенными для одной и той же цели, которые просто разыгрываются на неодинаковом уровне сложности. В целом эволюционный прогресс, рассматриваемый на примере организмов, сводится к внедрению все большего количества элементов в системы, стремящиеся к стабилизации; а поскольку задачи, которые для этого приходится решать, в аспектах энергетически-материальном, регуляторно-локальном и направляюще-целостном становятся все более сложными, как об этом свидетельствует наше еще очень поверхностное знание теории регулирования и динамического программирования, то разница между информацией, заключенной в муравье, и, соответственно, в антилопе, – физически измерима, но не может быть основанием для технологической аксиометрии. Ни муравей, увеличенный до размеров антилопы, ни антилопа, «микроминиатюризованная» до муравья, не могли бы функционировать. Когда мы сравниваем животных с приблизительно одинаковой схемой строения – например, колибри с альбатросом, – то они оказываются различными решениями задачи полета; альбатрос является планеристом на дальние расстояния, а колибри – порхающей птичкой, с точки зрения параметров полета близкой к крупным насекомым. Необоснованность оценок, выставляемых таким разным организмам при их сравнении, приводит к тому, что – скорее всего бессознательно – апологет прогресса в эволюции использует в подтверждение своей гипотезы аргументы
Изменение условий среды является тем же самым, что и изменение правил игры. Фактором же, способствовавшим прогрессу цефализации, или, в более общем смысле, «личному потенциалу обучаемости» организмов – было систематическое отставание максимального темпа обучения, на который генотип способен, от темпа изменений окружающей среды. Причем в силу вещей, чем длиннее цикл жизни особи, тем медленнее должен быть темп «усвоения знаний хромосомами». Потому что «квантом» урока является отдельный проход организмов через среду. Упрощенно дилемма адаптации представляется таким образом: как создать регулятор, который бы справился с актуально протекающей игрой, а одновременно – с любым возможно значительным и возможно быстрым изменением ее правил? На этот вопрос эволюция давала конструктивно разнообразные ответы. Во-первых, такой: если изменение правил значительное и внезапное, необходимо временно выйти из игры – в «пережидательном виде». Однако эта тактика предполагает возврат – через некоторое время – начальных условий (игры, которую организм вести умеет). Потом такой: следует максимализовать предпрограммное разнообразие регулятора и само это предпрограммирование сделать эволюционно пластичным. И наконец: следует отказаться от предпрограммирования регулятора, если только это возможно, а зато снабдить регулятор потенциалом самопрограммирования на основе обучения.
На практике «ответы» в виде организмов «смешанны». Первый ответ охватывает класс «переживательных» решений. Этот ответ был дан раньше других, потому что состояние обратимого гомеостаза тем достижимее, чем проще гомеостат.
Второй ответ охватывает класс решений, представленных насекомыми. Потому что насекомые разыгрывают огромное количество предпрограммных игр, а это предпрограммирование стабилизировалось в формах, проверенных многомиллионными прохождениями через сито окружающей среды.