нелокальные квантовые корреляции. Такое состояние в квантовой физике называется чистым запутанным состоянием (ЧЗС).

И самое интересное, что классических корреляций в ЧС нет и быть не может.

Таким образом, ЧС бывают либо

сепарабельными
, либо ЧЗС. Третьего, как говорится, не дано.

И это не мои

домыслы
и предположения. Это строгий результат, следующий из основ квантовой теории. Например, об этом достаточно четко сказано в работе «Запутанные квантовые состояния атомных систем»[61]. В разделе 2.2 читаем: «Итак, чистые квантовые состояния бывают либо квантово-коррелированными (запутанными), либо вообще некоррелированными». Далее, в разделе 2.4 еще раз: «Как уже отмечалось, в случае чистых состояний любые корреляции являются квантовыми, то есть соответствуют запутанным состояниям».

Напомню, что некоррелированность, то есть отсутствие вообще каких-либо корреляций, как классических, так и квантовых, — это сепарабельные состояния.

Итак, непосредственно из основ квантовой физики следует, что:

? замкнутая система находится в чистом состоянии;

? в замкнутой системе корреляции (и классические, и квантовые) между подсистемами могут отсутствовать вовсе (в случае не взаимодействующих подсистем, то есть

сепарабельного
состояния);

? в замкнутой системе корреляции между подсистемами могут быть только нелокальными квантовыми (для взаимодействующих подсистем);

? в замкнутой системе отсутствуют классические корреляции между ее подсистемами.

Напомню, что речь идет о произвольных замкнутых системах. И в полной мере эти выводы справедливы только для всего Универсума, как единственной системы, которая является по-настоящему замкнутой.

Здесь у многих сразу же может возникнуть вопрос: как же так, мы, вместе с окружающими нас объектами, являемся частью Вселенной, при этом классически взаимодействуем с окружением и вовсе не находимся в нелокальном состоянии. Как это сопоставить с тем, что было сказано выше? Никакого противоречия здесь нет, и квантовая механика также отвечает на этот вопрос. Кстати, отвечая на него, ученые вывели количественную характеристику запутанности. Все дело в том, что мы, вместе с окружающими нас объектами, являемся именно частью системы, а классические корреляции отсутствуют во всей системе целиком. То есть в пространстве состояний (гильбертовом пространстве) с максимальной размерностью, соответствующем всей системе, классических корреляций нет, но они могут быть между подсистемами в пространствах состояний меньшей размерности. Данное обстоятельство можно пояснить еще следующим образом: гипотетический внешний наблюдатель, который смотрит на замкнутую систему снаружи, не увидит перед собой никаких классических объектов и не обнаружит взаимодействий между ними. Перед ним будет пустота — уточню:

это в том случае, если наблюдатель охватывает взглядом сразу всю систему. Если же у него есть что-то наподобие «подзорной трубы», и через нее он станет смотреть на отдельную подсистему, «вырезая» из поля зрения все остальное окружение, тогда он уже сможет увидеть выделенную подсистему как классический локальный объект.

Если обратиться к математическому формализму квантовой теории, то для записи вектора состояния обычно используют

дираковские
обозначения. В самом простом случае двухуровневой системы (например, кубита), вектор состояния имеет вид:

|?> = a|0> + b|1>, (2.1)

где а и b — комплексные числа, которые могут принимать любые значения, удовлетворяющие условию

нормировки
| а|2+ |b|2= 1. Можно сказать, что
кубит
с
вероятностью
| а|2 находится в состоянии |0n и с вероятностью | b|2 — в состоянии |1n. Это обобщение классического бита, который является предельным случаем кубита при |а|2= 1, либо | b|2= 1.

Состояние |0n = |^n = (1, 0)Т — это вектор-столбец (

спин- вверх
); состояние |1n = |
v
n = (0, 1)Т тоже вектор- столбец, но
спин-вниз
.

2.6. Волновая функция

Довольно часто в качестве синонима словосочетания «вектор состояния» используют термин «волновая функция». Но различие между ними есть, и я хочу немного пояснить этот момент. Термин «волновая функция» я стараюсь не употреблять, поскольку под ним обычно подразумевается, что вектор состояния является функцией координат и времени. То есть предполагается, что, по умолчанию, в качестве «абсолюта» нам задан пространственно-временной континуум. Лично я считаю, что описание в терминах волновой функции — это не квантовая теория, а классическая, в лучшем случае — полуклассическая с незначительными элементами квантового формализма. В аксиоматике квантовой теории просто нет такого понятия, как пространственно-временные координаты, и в

самодостаточной
квантовой теории различные пространственно-временные континуумы получаются лишь как естественное следствие процесса декогеренции нелокального источника реальности.

Я предпочитаю использовать термин «вектор состояния» как функции внутренних степеней свободы системы. Использовать для описания системы не внутренние, а внешние ее характеристики относительно какой-либо выбранной системы отсчета я считаю, мягко говоря, некорректным. Тем более что для замкнутой системы, описываемой вектором состояния (волновой функцией), просто по определению не может существовать никакой внешней системы отсчета, так как, строго говоря, в случае чистого состояния (замкнутой системы) нет никакого внешнего тела, с которым можно было бы ее связать. Кстати, часто именно при таком некорректном подходе возникают так называемые «парадоксы» квантовой теории, типа парадокса

ЭПР-пары
, когда смешивают внешние и внутренние степени свободы системы (координаты и спин). Естественно, что внутренние степени свободы в данном случае не зависят от внешних (спин не зависит от координат), и можно по внешним степеням свободы систему усреднить. При этом получается «парадоксальный» на первый взгляд результат, согласно которому спиновые степени свободы
скоррелированны
независимо от расстояния между составными частями системы.

Ничего удивительного здесь нет. Если вы хотите разрешить парадокс, то будьте добры забыть о том, что замкнутая система имеет внешние координаты, и описывайте процесс ее «деления» на части как внутренний. Лишь тогда возникают локальные пространственно-временные координаты как внутренние характеристики самой системы, точнее, характеристики взаимодействия ее подсистем, когда с какой-либо одной из них связывается система отсчета. И внешние степени свободы здесь действительно не имеют значения, с небольшим уточнением — до тех пор, пока мы рассматриваем нашу систему как замкнутую, пока она не начнет «чувствовать», что она не одна в этом мире.

В макроскопическом мире спиновые степени свободы достаточно хорошо изолированы от других, поэтому они довольно долго «живут» в своем локальном «параллельном» пространстве-времени, пока оно не пересечется и не «

схлопнется
» с окружением. Для спиновой системы между ее составными частями может и не быть
никакого
Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату