о физическом вакууме, на волновых функциях, все полевые теории и т. п., по моему мнению, в лучшем случае «застряли» где-то между классической и квантовой физикой. Чисто квантовые физические процессы, связанные с

несепарабельностью
, такие как декогеренция и рекогеренция, не имеют никакого классического аналога, поэтому
остаются
недоступны такому описанию.

В квантовой теории в противовес принципу сепарабельности хорошо известен свой принцип несепарабельности. Я приведу его формулировку из книги К.

Блума[68]
.

Принцип несепарабельности: если две системы взаимодействовали в прошлом, то в общем случае невозможно приписать один вектор состояния любой из двух подсистем[69].

Этот принцип является прямым следствием общих правил квантовой механики. Принцип является всеобщим, и взаимодействия могут быть любого рода, между любыми системами. Например, уважаемый читатель, читая эти строки, вы взаимодействуете со мной на ментальном уровне, и между нами протянулись невидимые нити квантовых корреляций — в какой-то самой незначительной нашей части, на уровне квантовых ореолов, мы уже пересеклись и составляем единое целое. Мы с вами находимся в суперпозиционном состоянии на ментальном уровне, но практически невозможно выделить эти суперпозиционные состояния среди «шума» других более сильных взаимодействий, которые их заглушают. Чтобы их отследить, нужны достаточно большое мастерство и практический опыт расширенного восприятия реальности, нужна магия.

Принцип несепарабельности — самый общий, и обычно мы имеем дело с целым набором самых различных взаимодействий с окружением, при этом отдельным взаимодействиям соответствует своя степень квантовой запутанности (несепарабельности). Вот почему в «игру» вступают относительные величины квантовой запутанности. Для сильных классических взаимодействий

сепарабельность
выше, поэтому хорошо работает приближение, не принимающее во внимание квантовую запутанность в классической физике. Однако подсистемы могут находиться в практически
сепарабельном
состоянии по одним степеням свободы, но несепарабельны по другим. Например, мы
сепарабельны
(разделены) в своих физических телах, но в какой-то мере несепарабельны по чувствам и еще более — по мыслям.

Иногда можно услышать мнение, что распространение принципа несепарабельности на макроскопические объекты неправомерно, что нужно отдельно оговаривать условия применимости этого принципа, что, мол, на

микроуровне
он применим, а на
макроуровне
— нет.

На это я могу сказать, что такая точка зрения

довольно поверхностна
. Замечу, что в формулировке принципа несепарабельности, приведенной выше, нет даже слова «квантовая» в отношении систем, о которых идет речь. Довольно часто, особенно в старых учебниках по квантовой механике, термин «квантовый» служил синонимом слова «
микроуровень
». Отсутствие этого термина неслучайно — в определениях такого рода взвешивается и продумывается каждое слово. Речь идет именно о любых системах и о любых взаимодействиях. Никаких ограничений на действие этого принципа нет. Накладывая ограничения в отношении макросистем, мы тем самым будем утверждать, что квантовая теория ущербна, ограничена, что она неверно описывает реальность. Оговаривая условия применимости принципа несепарабельности, мы тем самым делаем заявления еще более крамольные, чем все слова о магии несепарабельных состояний — ставим под сомнение справедливость самой квантовой теории. Как известно, классическая физика — это лишь частный случай квантовой теории, это приближенное описание, которое исходит из квантовой физики. Поэтому, когда речь идет о макросистемах, в лучшем случае можно говорить лишь о том, что при их рассмотрении мы в отдельных задачах пренебрегаем эффектами, связанными с
несепарабельностью
. Но поставить под сомнение само существование квантовой запутанности (несепарабельности) между макросистемами невозможно. Для этого придется опровергнуть всю квантовую теорию.

В настоящее время под «квантовой системой» в общем случае понимается любая система, описываемая в терминах состояний, то есть посредством «вектора состояния», «матрицы плотности» и т. д. Это наиболее полное описание. А классическая физика для макросистем — лишь частный случай квантового описания, предельный случай, когда мы пренебрегаем

несепарабельностью
. Вся классическая физика — это
сепарабельное
описание.

Макросистемы отличаются от микрочастиц только в одном плане — на

микроуровне
эффекты несепарабельности выражены наиболее явно, для микрочастиц квантовые корреляции сравнимы с классическими взаимодействиями, поэтому без запутанности тут уже не обойтись.

Если кому-то кажется, что для описания макроскопического мира

достаточно классической
физики, и он не стремится понять и описать магию (в широком смысле слова), которая в этом мире вполне реальна, — тогда, пожалуйста, квантовой запутанностью можно пренебречь.

Естественно, многое зависит от ситуации, от тех вопросов и задач, которые ставятся при рассмотрении систем и подсистем. Например, мы можем отделить кирпич от стены дома и рассматривать его как самостоятельный

сепарабельный
объект в тех случаях, когда нас не интересуют его квантовые корреляции, а мы хотим его использовать для другой постройки. Классическая физика так и поступает. Но когда задача ставится иначе, например, когда нам хочется узнать, какую квантовую информацию содержит кирпич об обитателях дома и произошедших там событиях, — основное внимание мы будем уделять квантовым корреляциям, содержащимся в кирпиче. Наверное, многие слышали, что стены старых домов способны многое «рассказать» о своих обитателях. И сильные эзотерики могут «считывать» фрагменты информации такого рода. Можно считать все это фантастикой, но принцип несепарабельности говорит о том, что ничего необычного в этом нет, наоборот, это самая естественная ситуация, что кирпич в нелокальных корреляциях хранит информацию обо всех взаимодействиях, в том числе о «психических выделениях» жителей дома, особенно о наиболее ярких их проявлениях. Вот только «снять» эту информацию не так-то просто, хотя с физической точки зрения это в принципе возможно.

«Вычеркнуть» запутанность очень просто — достаточно ею пренебречь и не принимать во внимание. Но вот как объяснить те сверхъестественные (аномальные) явления, в которых она принимает участие, в том числе эзотерические практики, не прибегая к самой этой запутанности, трудно представить.

Замечу еще раз, что несепарабельные (запутанные) состояния не имеют никакого аналога в классической физике. Они никак не могут быть ею объяснены и описаны. Для классической физики — это в прямом смысле «сверхъестественные», «потусторонние» проявления, выходящие за рамки классических представлений о реальности.

«В терминах матрицы плотности классическая физика является предельным случаем квантовой механики, когда матрица плотности строго

диагональна
в одном и том же фиксированном базисе, и полностью положительное отображение становится тогда стохастическим отображением. Из этого следует, что квантовая эволюция системы имеет гораздо более сложный характер по сравнению с ее классическим поведением, и достаточно проанализировать характеристики квантовых систем, чтобы из этих результатов, как частный случай, получить классические характеристики систем, если ограничиться рассмотрением только диагональных элементов матрицы плотности».

В этом абзаце я дословно процитировал статью V.

Vedral
, Phys. Rev.
Lett
.
90, 050401 (2003).

Нужно хорошо понимать одну очень простую вещь: вся классическая физика со всеми ее законами для макроскопических тел и физических полей — частный случай квантовой теории. Это упрощение, пренебрежение

несепарабельностью
в том числе. Но если мы ее отбрасываем

Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату