в уравнениях классической физики, это не значит, что в объективной реальности она исчезает. Мы просто ею пренебрегаем в тех задачах, где она нас не интересует. Хотя до сих пор не прекращаются попытки найти классическое объяснение квантовой запутанности. Но любое классическое объяснение будет лишь упрощением, лишь частным случаем
Достоинство квантовой механики в том, что она способна рассматривать как сепарабельные состояния, так и несепарабельные. Сепарабельные являются ее частным случаем, когда матрица плотности
Убрать магию из физики достаточно просто — нужно лишь закрыть на нее глаза и пренебречь
Сложность описания зависит от того, какую задачу мы решаем и в каком представлении записываем вектор состояния (или матрицу плотности). Но в квантовой теории есть и более общий подход — непосредственно оперировать абстрактными векторами состояния, не переходя к какому-то конкретному представлению. Это полная теоретическая абстракция, идеал, но он легко реализуем, и из этого общего описания следует несепарабельность любой системы с окружающими его объектами при наличии взаимодействия, пусть даже в прошлом.
Для описания в терминах абстрактных векторов состояния никакого различия между макро- и микросистемой не существует. Это описание справедливо для любых систем, правда, из-за его общности и результаты мы можем получить только общие, не количественные, а качественные, но они неоспоримы, например, вывод о наличии той же несепарабельности.
Обычно в научных статьях примерно так и пишут.
Рассмотрим самую общую ситуацию. Предположим,
Затем, исходя только из первооснов квантовой механики, которые и составляют фундамент ее математического формализма, делается вывод о несепарабельности
Количественно проще всего описывать микрочастицы, поскольку для них легко записать в явном виде вектор состояния, например, в спиновом представлении, и тогда можно количественно оценить меру квантовой запутанности. Но качественные выводы о наличии несепарабельности для произвольных взаимодействующих систем, в том числе макроскопических, опровергнуть нельзя, поскольку эти выводы делаются на фундаментальном уровне квантовой теории, только на основе ее математического формализма. Если эти выводы опровергаются, то тем самым опровергается сама теоретическая основа квантовой теории, ее формализм.
Таким образом, связка — взаимодействие посредством энергий + нелокальные корреляции (которые неотделимы от взаимодействия) — позволяет на более высоком научном уровне говорить об энергоинформационном обмене, в том числе и живых систем с внешней средой (или между собой). Нелокальные корреляции характеризуют обычно в информационных терминах, и мера квантовой запутанности (несепарабельности) рассматривается как мера информационного единства. Никакие материальные физические величины, связанные с веществом или полями, для характеристики нелокальных корреляций неприменимы, но, тем не менее, наличие этих корреляций в окружающей реальности — объективный факт. Об энергоинформационных процессах часто говорят, но общими словами, без конкретной физики. Термин «энергоинформационный обмен» при квантовом подходе наполняется конкретным физическим содержанием, а способность квантовой теории количественно описывать как сепарабельные энергетические процессы, так и
Почему я так много внимания уделяю несепарабельности? Ответ прост: одного этого принципа достаточно, чтобы объяснить наличие и физическую причину всего «сверхъестественного» в нашем предметном мире. Его одного достаточно, чтобы принять магию как неотъемлемую часть реальности. Пока это объяснение будет качественное, физикам-теоретикам не так-то легко подобрать удобную для практических целей количественную характеристику несепарабельности (меру квантовой запутанности). Трудность состоит в том, что для макроскопических тел характерно большое число качественно различных степеней свободы и различных взаимодействий с окружением — очень много каналов квантовой запутанности с окружением. Однако такая работа ведется, и уже предлагаются меры квантовой запутанности для систем произвольной размерности, о чем более подробно мы будем говорить в следующей главе.
Но для большинства из нас достаточно и качественного объяснения. Количественное описание нужно для практического применения квантовой запутанности в технических устройствах. Ведь мало кто из нас знает количественные законы, которым подчиняется ток в электрических цепях, но в общих чертах все мы представляем, что такое электричество. Количественное описание электрического тока необходимо для создания электротехники. Так же и с квантовой запутанностью (нелокальными квантовыми корреляциями): необязательно знать ее количественные законы — достаточно иметь качественное понимание основных ее особенностей.
На несепарабельность можно взглянуть еще с одной стороны: существует ли механизм образования