name='SpellE'>кубит
взаимодействует со своим внешним окружением:

, (3.11)

где

Е
— единичная матрица,  = (Px, Py, Pz) — вектор Блоха (вектор поляризации), а  = (
?x
,
?y
,
?z
) — вектор, компонентами которого являются матрицы Паули:

. (3.12)

Компоненты вектора Блоха определяются как средние значения матриц Паули по обычному правилу (3.8) Pj ? <

?j
> =
Tr
(
?
?j
); j = x, y, z.

Три проекции вектора поляризации Px, Py, Pz, согласно (3.11), полностью определяют матрицу плотности кубита. В случае чистого состояния длина вектора поляризации равна 1, то есть , и этот вектор описывает сферу единичного радиуса, которая называется сферой Блоха (рис. 1). В этом случае компоненты вектора Блоха равны:

Px =

sin?cos?
,

Py
=
sin?sin?
,

Pz
=
cos?
,

и два вещественных параметра (углы ? и ?) однозначно задают вектор состояния (матрицу плотности) кубита.

В случае смешанного состояния длина вектора поляризации становится меньше единицы, то есть , и он будет расположен внутри сферы.

Итак, матрица плотности кубита может быть представлена точкой в нашем привычном трехмерном пространстве. То есть существует взаимно однозначное соответствие между матрицей плотности и точкой шара единичного радиуса. Для чистого состояния (замкнутой системы) — это точка сферы.

Рис. 1. Сфера Блоха

Чистые состояния, описываемые одним вектором состояния, соответствуют точкам поверхности сферы Блоха, а смешанные состояния, описываемые матрицей плотности, — точкам внутри шара. При взаимодействии с окружением (при декогеренции), в случае смешанного состояния, вектор состояния как бы

погружается внутрь сферы Блоха и
будет описывать уже не окружность, а, например эллипс, что-то похожее на форму яйца. А в самом предельном случае, когда состояние кубита становится максимально смешанным, весь шар, все пространство допустимых состояний, сжимается до отрезка на оси квантования между значениями 1/2 и —1/2. Этот отрезок — тот минимум, который может остаться от кубита, скажем, в самом худшем (или лучшем?) случае.

Такая ситуация, например, имеет место при максимально запутанном состоянии

с
другим
кубитом
. Тогда, как уже говорилось выше [см. выражение (3.5)], матрица плотности одного кубита является максимально смешанной.

В этом проявляется двойственный характер декогеренции: с одной стороны, она приводит к локализации системы, нарушению когерентного состояния, но с другой — взаимодействие с окружением ведет к квантовой запутанности с этим окружением. Можно еще сказать и так: предельно

возможная
декогеренция окружением совпадает с максимальной запутанностью с этим окружением. И реализуется эта ситуация при наличии максимально возможного взаимодействия между кубитами (как в нашем случае), когда они составляют единое целое (максимально запутанное состояние).

Можно задать вопрос: а какое количество информации содержит один

кубит
? Если с каждой точкой на сфере Блоха, с каждым положением вектора состояния сопоставить определенную информацию, то, как это ни парадоксально звучит,
кубит
содержит бесконечный объем информации, и эта информация аналоговая, непрерывная.
Кубит
,
двигаясь по поверхности сферы Блоха
, непрерывно изменяет свое состояние, изменяя при этом информацию. Но информация, содержащаяся в
кубите
, — квантовая
. «
Считать» с кубита можно только один бит классической информации — либо 0, либо 1.

Одно из хорошо известных достоин

ств кв
антовой теории заключается в том, что она может одновременно, в едином ключе, описывать как дискретные, так и непрерывные характеристики системы. Так же и в случае кубита. Имея два основных состояния, мы можем описать бесконечное число «оттенков» между этими двумя пограничными состояниями.

Управлять состоянием кубита — значит, управлять амплитудами а и b в векторе состояния, эти величины непрерывные, аналоговые, поэтому квантовый компьютер иногда называют компьютером с аналоговым управлением[94]. В настоящее время такое управление кубитами научились реализовывать унитарными (обратимыми) операциями.

Попросту говоря, научились вращать вектор состояния кубита по сфере Блоха, переводя его в нужное состояние, в том числе в нелокальное суперпозиционное или в запутанное с другими кубитами.

При этом привычные для нас классические состояния кубита составляют бесконечно малую часть его совокупного пространства состояний. В терминах коэффициентов а и b — из бесконечного их числа только два значения соответствуют чистым классическим (локальным) состояниям,

когда либо
b = 0, либо a = 0 (в этом случае нет суперпозиции состояний, и у нас |?n = |0n или |?n = |1n). На сфере Блоха — это только две точки (полюсы) из бесконечного числа других точек сферы. Максимально запутанные состояния — точки экватора, это уже линия, а не две точки.

То же самое можно сказать и о любых объектах окружающей реальности. Их допустимое пространство состояний гораздо шире классических состояний. Классический домен составляет лишь незначительную (бесконечно малую) часть совокупной квантовой реальности окружающего мира.

В частных случаях, как я уже отмечал, состояниями кубитов можно управлять и целенаправленно получать любые состояния. Именно практическая работа над созданием квантовых компьютеров многое дала для понимания соотношений между различными состояниями и привела к реализации таких переходов. Например, ученые научились переводить кубиты из классического локального состояния в нелокальную суперпозицию (преобразование Адамара):

Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату