и соответствующая ему матрица плотности:
. (3.19)
Можно заметить, что (3.16) получается из (3.18) унитарным преобразованием
,
то есть чистым вращением вектора состояния (3.18), которое характеризуется параметром
А состояние (3.16) описывает эволюцию системы в лабораторной (неподвижной) системе координат, связанной с внешним наблюдателем. Это вид «снаружи». Можно пояснить данный момент еще следующим образом. При эволюции системы вектор состояния при любом его положении остается для самой системы осью квантования. Но для внешнего наблюдателя, со своей системой отсчета и выбранной уже им осью квантования (обычно за нее принимают ось
Максимально смешанное состояние [первая матрица в правой части выражений (3.17) или (3.19)] определяет две важные характеристики системы. Во-первых — центр сферы Блоха, то есть точку, равную сумме диаметрально противоположных точек, в которых вектор состояния «протыкает» сферу Блоха в любом из своих положений[100], — это ядро, центр системы, из которого выходит сам вектор состояния. Во-вторых, максимально смешанное состояние задает ось квантования, поскольку составляет на этой оси постоянный и неизменный отрезок между двумя (для кубита) точками. Переходя в систему отсчета, связанную с вектором состояния (во вращающуюся систему координат), этот вектор становится осью внутреннего мира системы, на которую с равной вероятностью, с равной возможностью реализации «нанизаны» все допустимые состояния системы. В нашем простейшем случае это два допустимых состояния, которые всегда остаются в распоряжении системы, в каком бы положении ни находился вектор состояния. Но они существуют только как потенциальные возможности, а конкретная реализация той или иной альтернативы зависит уже от динамической части матрицы плотности.
Если рассматривать
, (3.20)
можно назвать простейшей духовной монадой элементарного сознания, поскольку это «неуничтожимая» часть сознания.
Замечу, что ядром духовной структуры, монадой, может «наделить» только система, находящаяся в пространстве состояний большей размерности. Так, матрица плотности (3.20) получается, если мы берем частичный след [см. выражение (3.5)] по одной из подсистем максимально запутанного двусоставного чистого состояния (любого из четырех так называемых
Или, если сказать несколько иначе, матрица плотности (3.20) не является чистым состоянием, она не способна существовать в виде замкнутой системы, а может быть только частью большой системы, причем находиться с этой системой в нелокальном максимально запутанном состоянии.
Стоит отметить, что любое чистое состояние всегда имеет только одно ненулевое собственное значение, равное единице. Ни одна замкнутая система не может иметь других собственных значений, и единица здесь означает само существование системы как Единицы.
В этом отношении собственное значение, равное минус единице — нечто неприемлемое, «мерзкое» для системы. Это отрицание ее духовной сути, это посягательство на самое ценное — духовное ядро системы, на пространство ее возможных состояний. Да и не может замкнутая система, как единое целое, иметь отрицательное собственное значение — как было оно положительной Единицей, так и останется. А вот для структурных частей системы такая возможность появляется. Динамическая часть матрицы плотности (3.19), то есть матрица
, (3.21)
характеризуется именно этим свойством, она имеет два собственных значения: +1 и —1.
Наличие двух собственных значений, одно из которых равно минус единице, означает, что матрица описывает состояние, которое имеет двойственную природу, единство и борьбу противоположностей, поскольку отрицательное собственное значение — это не просто что-то плохое, негативное, а абсолютная противоположность, несовместимость с исходным состоянием, его полное отрицание. Таким образом, по поводу сознания, о котором мы ведем речь, можно сказать, что формирование материальной оболочки системы сопровождается появлением двух нравственных начал, лежащих в основе
Что такое «зло», можно попытаться понять на более простом примере. Предположим, у нас есть чисто классическое стационарное состояние, описываемое вектором |
,
которая, как и все остальные, может быть представлена в виде суммы матрицы, пропорциональной единичной, и матрицы с нулевым следом:
.
Одно из собственных значений второй матрицы, равное минус единице, «уничтожает» одно из допустимых состояний «ядра» системы.