смещением точки. При этом роль элементарных объектов выполняют события (состояния), единственное требование к которым заключается в их
5.2. Построение физической модели
В квантовой механике доказывается, что систему взаимодействующих частиц можно описать, используя понятие квантового поля. При этом принято каждому виду взаимодействия ставить в соответствие свое квантовое поле. По современным представлениям, квантовое поле является наиболее фундаментальной и универсальной формой материи, лежащей в основе всех ее физических проявлений (как волновых, так и корпускулярных)[151].
Однако, несмотря на такую универсальность, концепция квантового поля в настоящее время используется только в физической теории микромира. Причины, мешающие расширить понятие квантового поля, включив в него и макроскопические объекты, носят принципиальный характер. Суть этих затруднений заключается в следующем. Если квантовое поле является свободным, то
Для начала можно попытаться воспользоваться методами статистической физики, хорошо зарекомендовавшими себя в аналогичной ситуации при описании свойств макроскопических тел, моделируемых совокупностью большого числа взаимодействующих атомов или молекул. Есть все основания надеяться, что, если свойства макроскопических тел и свойства составляющих их частиц качественно различны, то качественно отличаются друг от друга и квантовые поля самих макрообъектов и микрочастиц, из которых они состоят.
Справедливости ради следует отметить, что статистические методы широко используются в квантовой теории поля. Однако все они основаны на связи между уровнями энергии системы и числом частиц[152] (на распределении Гиббса, которое устанавливает вероятность нахождения подсистемы в состоянии с энергией
Попробуем рассуждать следующим образом. Рассмотрим пока в привычном представлении произвольную систему взаимодействующих частиц (например, твердое тело). Полную внутреннюю энергию тела, в соответствии с качественно различными типами взаимодействия, принято разделять на энергию межмолекулярных взаимодействий, энергию молекул, а также внутриатомную и ядерную энергию. Энергия самих молекул (атомов), в свою очередь, делится на электронную, колебательную и вращательную части, из них каждая следующая меньше по величине по сравнению
Каждому из указанных выше взаимодействий соответствует свое квантовое поле. Таким образом, произвольный объект можно рассматривать как многоуровневую систему квантовых полей. Очевидно, что все эти поля сложным образом взаимодействуют друг с другом. В результате такого взаимодействия образуется единое квантовое поле объекта. Помимо локальных составляющих, обусловленных близкодействующими сильными внутриядерными взаимодействиями, оно содержит в себе нелокальные дальнодействующие поля и является наиболее полной характеристикой объекта, определяя не только его внутреннюю структуру, но и взаимодействие с другими, в том числе удаленными, объектами. Иными словами, энергию любого объекта можно разделить на две составляющих. Одна из них определяет форму тела и задает поверхность, отделяющую его от окружения. А вторая, связанная с микроскопическим движением частиц и энергиями их взаимодействий, выходит далеко за границы этой локальной формы (в пределе на бесконечность).
Для изучения закономерностей, которым подчиняются поведение и свойства объектов, моделируемых таким образом, попытаемся воспользоваться методами статистической физики. Чтобы обосновать возможность их применения, рассмотрим основные принципы квантовой статистики.
Согласно подходу, принятому в статистической физике[153], в рассматриваемом объекте обычно выделяется достаточно малая, но еще макроскопическая подсистема. Она не является замкнутой и испытывает всевозможные воздействия со стороны остальных частей системы. Однако именно в силу сложности и запутанности внешних воздействий выделенная подсистема за достаточно большой промежуток времени многократно побывает во всех своих возможных состояниях. Поэтому, устремляя время на бесконечность, можно ввести величину
С учетом «почти непрерывности» энергетического спектра макроскопических тел обычно вводится квантовый аналог классического элемента фазового объема — число квантовых состояний
Матрица плотности в энергетическом представлении вводится следующим образом. Выделенная нами подсистема на протяжении малого промежутка времени является квазизамкнутой, поскольку ее внутренняя энергия намного больше энергии взаимодействия с другими подсистемами. Поэтому появляется возможность ввести понятие стационарных состояний, которые получаются при полном пренебрежении всеми взаимодействиями данной подсистемы с окружающими частями замкнутой системы. Обозначим