Во избежание недопонимания напомню, что мы исходим из непрерывного описания реальности, то есть исходным здесь является понятие поля, в котором нет никаких частиц. В этом случае различные энергии взаимодействия нельзя рассматривать только как результат взаимодействия частиц между собой и делать вывод, что без частиц эти энергетические структуры не существуют. Согласно квантовой теории поля, сами частицы появляются как один из возможных результатов взаимодействия непрерывных энергетических структур с измерительным прибором (в частности, с наблюдателем). При этом опровергается распространенное предубеждение, что различные энергии взаимодействия возникают лишь при объединении отдельных частиц в единую систему. Частицы как первичные и

самодостаточные
элементы реальности не существуют — это вторичные структуры, которые «проявляются» из нелокального состояния в результате декогеренции окружением. Термин «энергия взаимодействия» здесь не совсем удачен, но я использую его, чтобы было понятно, о чем идет речь, и чтобы согласовать предложенный подход с общепринятым описанием предметного мира.

Такой процесс «проявления» частиц из непрерывных полевых структур имеет четкий физический смысл, достаточно подробно формализован и является одним из наиболее важных разделов квантовой теории поля. Обычно он называется вторичным квантованием[156] полей. Хотя некоторые авторы стараются избегать этого термина. Например, Н. Н. Боголюбов говорит просто о квантовании полей и пишет, что «термин „вторичный“ подразумевает наличие первичного квантования. На самом деле квантование проводится только один раз, и этот термин оказывается дезориентирующим».

В настоящее время ученые, особенно те, кто работает в области квантовой теории поля, достаточно отчетливо понимают, что одностороннего, предметного описания реальности недостаточно для полноценной характеристики объектов. Например, Х.

Хакен
в «
Квантовополевой
теории твердого тела» пишет: «Как при первичном, так и при вторичном квантовании понятие частицы никоим образом не заменяется полностью понятием поля, и понятие поля никоим образом не заменяется понятием частицы.
Более того, появляется новое двойственное представление: в зависимости от экспериментальных условий (в частном случае, при нашем восприятии окружающего мира.
С. Д.) проявляется либо корпускулярный, либо волновой характер поля».

Однако продолжим построение модели. Ситуация, когда физический объект моделируется как совокупность совмещенных энергетических структур, является не совсем обычной, поскольку в каждой точке мы имеем несколько наборов физических величин, каждый из которых относится к своей структуре. Подобная ситуация с успехом разрешается в механике сплошной среды при описании многофазных смесей (аэрозолей, суспензий,

газовзвесей
, пузырьковых жидкостей и т. д.). Делается это при помощи введения понятия многоскоростного континуума[157], который представляет собой совокупность континуумов — каждый из них относится к своей фазе (твердой, жидкой или газообразной), входящей в состав многофазной среды, и характеризуется собственным набором физических величин. Если состав гетерогенной смеси удовлетворяет определенным ограничениям, то многофазную среду можно моделировать как совокупность непрерывных фаз в виде взаимопроникающих континуумов. Каждый элемент объема в этом случае содержит несколько плотностей, скоростей и других величин, относящихся к своей фазе. В нашей модели мы имеем аналогичную ситуацию — совокупность взаимопроникающих квантовых полей, когда в каждом элементарном объеме есть несколько наборов физических величин, относящихся к своему полю.

Еще один момент, на который следует обратить внимание: мы можем предположить, что каждый из континуумов, то есть каждая энергетическая структура, имеет собственную метрику[158] пространства событий, зависящую, например, от средней плотности энергии данной структуры. Иными словами, каждая составляющая находится в собственном пространстве событий и в различной степени запутанности в соответствии со своими физическими характеристиками. Это предположение вполне обосновано, поскольку согласно теории декогеренции степень классичности объекта зависит от количества информации, которая в нем «записывается» при взаимодействии с окружением. Очевидно, что на носителях, имеющих различную плотность, можно записать разное количество информации, следовательно, чем меньше объемная плотность энергии поля, тем выше для него будет мера квантовой запутанности.

В соответствии с теми практическими задачами, на решение которых модель направлена, возможны разные степени ее приближения к реальной ситуации. В наиболее простом случае нулевого приближения можно считать метрику всех составляющих структур одинаковой и не учитывать взаимодействие между ними, а в дальнейшем, усложняя задачи и, соответственно, модель, — постепенно включать взаимодействие, различие в метриках и степени запутанности.

5.3. Уравнения движения в энергетическом представлении

Попытаемся теперь на конкретном примере продемонстрировать, какую дополнительную научную информацию мы можем получить, используя предложенный подход. Кому трудно следить за математическими выкладками, может их опустить и сразу перейти к обсуждению полученного результата.

Рассмотрим уравнение движения для произвольного объекта. Его легко получить на основе упомянутого выше

лагранжева
формализма, используя наиболее общий подход, который применяется при выводе тензора энергии-импульса произвольной системы.

Напомню, что уравнение движения получают согласно принципу наименьшего действия путем варьирования D, и оно имеет вид:

, (5.1)

Равенство нулю дивергенции (5.1) означает, что сохраняется интеграл от тензора по гиперповерхности пространства. Этот тензор

Т
с компонентами
Tjl 
(j, l = 0, 1, 2, 3) называется тензором энергии-импульса системы. Он определен неоднозначно, а только с точностью до градиента произвольного антисимметричного тензора. Для его однозначного определения можно потребовать, чтобы существовала принятая в механике связь между импульсом и моментом импульса. В этом случае получаем дополнительное условие
Tjl
=
Tlj
, то есть тензор энергии-импульса должен быть симметричен.

Компонента T00 этого тензора характеризует плотность энергии. Вектор с компонентами T10/c, T20/c, T30/c есть плотность импульса, а вектор с составляющими

cT
01,
cT
02,
cT
03 плотность потока энергии — количество энергии, протекающей в единицу времени через единицу поверхности. Ввиду симметричности тензора мы имеем связь между потоком энергии и импульсом: плотность потока энергии равна плотности импульса, умноженной на c2. Компоненты
Tik 
(
i
k = 1, 2, 3) составляют трехмерный тензор плотности потока импульса. Взятые со знаком минус они образуют тензор напряжений. Плотность потока энергии есть вектор; плотность же потока импульса, который сам по себе вектор, должна быть тензором второго ранга.

Отсюда вывод: скорость изменения энергии, находящейся в объеме V, равна

Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату