количеству энергии, протекающей через границу этого объема в единицу времени, и скорость изменения импульса системы в объеме V есть количество импульса, вытекающее в единицу времени из этого объема [см. уравнения (5.4), (5.5) чуть ниже].
На этом обычно заканчивается анализ уравнений движения произвольной системы, и далее используют различные приближения, чтобы упростить общий вид тензора энергии-импульса в конкретных частных задачах.
Однако уже в общем случае тензора энергии-импульса произвольной системы нас не устраивает та часть интерпретации уравнений движения, в которой используется импульсное представление. Оно более подходит для описания локальных объектов, а в нашей ситуации, когда мы имеем дело с непрерывными полевыми структурами, предпочтительно использовать энергетическое представление. Поэтому сейчас мы постараемся от импульсной интерпретации перейти
к
энергетической и проанализируем уравнения движения уже в этих терминах.
Рассмотрим эти уравнения. Они получаются из (5.1) разделением на пространственные и временные производные:
, (5.2)
. (5.3)
Эти уравнения затем интегрируются по некоторому произвольному объему пространства V, и применяется теорема Гаусса.
, (5.4)
. (5.5)
Интеграл справа берется по поверхности, охватывающей объем V (
df
1,
df
2,
df
3— компоненты трехмерного вектора элемента поверхности
df
).
Рассмотрим более подробно второе уравнение (5.5), поскольку результаты, полученные при его анализе, будут широко использоваться в дальнейшем.
Левая часть не вызывает вопросов — здесь стоит скорость изменения импульса в объеме V, то есть сила, действующая на этот объем. А вот в правой части мы перейдем к энергетическому представлению и для этого воспользуемся аппаратом дифференциальной геометрии, теоретические основы которого изложены в книге Б. А. Дубровина, С. П. Новикова, А. Т. Фоменко «Современная геометрия: Методы и приложения» (М.: Наука, 1986). Достаточно подробное описание того, как эти методы применяются в физике, в частности, к тензору энергии-импульса, содержится в книге Ч.
Мизнера
, К. Торна, Дж.
Уилера
«Гравитация», т. 1 (М.: Мир, 1977).
Очень кратко напомню смысл основных понятий дифференциальной геометрии, которыми нам придется оперировать. Прежде
всего
это касается еще одного геометрического объекта — «дифференциальной формы», который наряду с другими хорошо известными геометрическими объектами (скаляр, вектор, тензор) описывает физические величины. В частности, более подробно рассмотрим понятие 1-формы.
Может возникнуть закономерный вопрос: зачем вообще нужны дифференциальные формы, и нельзя ли обойтись хорошо известными старыми понятиями? Чтобы ответить на этот вопрос, приведу следующий пример из книги
Мизнера-Торна-Уилера
.
Рассмотрим привычное определение вектора 4-импульса p для частицы, например электрона, с массой m и вектором 4-скорости u, то есть p =
mu
. Кроме этого, в физике известен и другой подход к понятию импульса, при котором каждой частице приписывается волна де Бройля. Эта волна имеет самый непосредственный физический смысл, ее дифракция на кристаллической решетке позволяет определить не только длину волны, но и ту конфигурацию в пространстве, которую образуют поверхности равных целочисленных значений фазы. Конфигурация этих поверхностей дает простейшую иллюстрацию, которую удается найти для 1-формы.
Определив эти поверхности посредством выражения
ћ
? фаза
, получим «1
-форму импульса» .
Посмотрим, что может дать такое представление импульса. Возьмем произвольный 4-вектор v. Он пересечет определенное число поверхностей целой фазы. Обозначим это число пересечений посредством выражения a,vn. Как правило,
начало
и конец вектора
v не лежат на поверхностях целочисленных фаз. Чтобы определить более точное значение числа пересечений (перейти от целого числа к
вещественному
), необходимо в этих позициях между соседними поверхностями целой фазы распределить бесконечное число поверхностей со всеми промежуточными значениями фазы. Далее, чтобы понятие 1-формы стало рабочим инструментом, нужно сделать еще один небольшой шаг. Необходимо трактовать 1-форму не как глобальную конфигурацию поверхностей уровня, а как некоторую аппроксимацию этих поверхностей в элементарном, бесконечно малом объеме в виде плоских поверхностей, расположенных на равных расстояниях друг от друга (линейное приближение). Плоские поверхности 1-формы в этом малом объеме дадут наилучшую линейную аппроксимацию искривленных поверхностей уровня, а сама 1-форма становится
линейной функцией, и появляется возможность оперировать ею, как и любой другой функцией. Нетрудно убедиться, что совокупность всех 1-форм в данном событии (4-точке) образует векторное пространство в абстрактном, алгебраическом смысле этого понятия. Существует и взаимно однозначное соответствие между произвольным вектором
n и соответствующей ему 1-формой
n? в виде a
n?,
vn =
n · v, то есть число пересеченных поверхностей произвольным вектором
v у некоторой 1- формы
n? равно проекции вектора
v на вектор
n (точка обозначает скалярное произведение).
Таким образом, дифференциальная геометрия дает исследователю надежный математический формализм, позволяющий установить взаимнооднозначное соответствие между локальным точечным описанием физических величин (импульс в данной точке в виде вектора) и нелокальным описанием (тот же импульс, но уже в объеме, окружающем эту точку в виде 1-формы). А значит, учитывая наши цели, необходимо поближе познакомиться с этим геометрическим объектом (небольшое дополнение см. в Приложении).
Нам понадобится еще одно понятие дифференциальной геометрии. Это 1-форма объема. Достаточно будет ограничиться частным случаем этого понятия для трехмерного куба в системе отсчета, относительно которой он находится в покое. Тогда 1-форма объема с 4-скоростью u и ребром L определяется как ? = — Vu = L3
dt
в случае стандартной положительной ориентации
u в прошлое (
u = —
dt
) или в другом варианте ? =
L2?
tdx
. По своему геометрическому смыслу 1-форма объема представляет собой объем, «заметаемый» со временем либо за счет движения самого объема (первый вариант), либо за счет движения одной из его граней, например, площадки
Syz
=
L2 в направлении
x со скоростью
u