В случае умножения имеем: 63 • 48 = 84 • 36, 82 • 14 = 41 • 28, ... — при этом произведение первых цифр у чисел
Наконец, для деления получаем такие примеры:
— в этом случае произведение первой цифры числа
17. Антисоветская теорема
Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.
1. Роль партии непрерывно возрастает.
2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.
Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.
18. Детям до шестнадцати решать запрещается
Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.
Подставляя
19. Неожиданный вывод
Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается, у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.
А именно, начнем с двух всем известных постулатов:
Кроме того, любой школьник знает, что
Откуда
Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:
Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.
Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.
20. Математическая игра Ландау
Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, v, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала (
Например, для пары 75–33 искомое равенство достигается следующим образом:
а для пары 00–38 — так:
Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» — спросил я у Ландау. — «Нет», — ответил он весьма определенно. — «Вы доказали теорему о несуществовании решения?» — удивился я. — «Нет», — убежденно сказал Лев Давидович, — «но не все номера у меня получались».
Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.
Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу
позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», — пишет об этом решении Каганов. — «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».
Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не