является одним из сильнейших переживаний, доступных человеку (Статьи и речи, М., 1969, с.12).
Проблема образов при познании Бога в христианстве, в частности, различие католического и православного подхода к духовной практике, обсуждается в гл.5.
Твердо держите в душах ваших, что вы не видели никакого образа в тот день, когда говорил к вам Господь на [горе] Хориве из среды огня, дабы вы не развратились и не сделали себе изваяний, изображений какого-либо кумира, представляющих мужчину или женщину, изображения какого-либо скота, который на земле, изображения какой-либо птицы крылатой, которая летает под небесами, изображения какого-либо [гада,] ползающего по земле, изображения какой-либо рыбы, которая в водах ниже земли; и дабы ты, взглянув на небо и увидев солнце, луну и звезды [и] все воинство небесное, не прельстился и не поклонился им и не служил им, так как Господь, Бог твой, уделил их всем народам под всем небом (Второзаконие 4:15-19).
Особенно роль символа подчеркивает православная традиция (например, для нее характерна развитая символика богослужения).
Символическое созерцание умопостигаемого посредством зримого есть одновременно и духовное ведение и умозрение видимого через невидимое (Максим Исповедник, Мистагогия, ср. Рим.1:20).
Здесь мы подходим к общему представлению о символе, которое играет огромную роль не только в религии, но и во всех отраслях человеческого восприятия, поскольку позволяет сделать его 'многомерным'.
В противоположность схеме и аллегории тут [в символе] мы находим полное равновесие между 'внутренним' и 'внешним', идеей и образом, 'идеальным' и 'реальным'... Символ есть самостоятельная действительность. Хотя это и есть встреча двух планов бытия, но они даны уже в полной, абсолютной неразличимости, так что уже нельзя указать, где 'идея' и где 'вещь' (А.Ф. Лосев, Диалектика мифа).
Развитой символической системой, часто использовавшейся в средневековье, была алхимия. Алхимические символы часто встречаются в научных трактатах и личной переписке ученых того времени. Зашифрованные символами сообщения имели целью не столько сохранить приоритет, сколько выразить невыразимое (без снижения уровня) более простыми средствами. Впрочем, проблемы понимания алхимических текстов, смысл которых практически полностью утерян для нас, возникали и у современников:
Несмотря даже на то, что поглощал их писания одно за другим, бессменно склоняясь снова и снова над трудами мудрецов, я не нашел в них сути того, что сии мудрецы провозглашали в своих сочинениях. Я изучал алхимические книги двояко, стараясь уразуметь в них и то, что говорит в пользу мужей, их написавших, и то, что говорит против них, но установил, что эти книги никчемны, бессмысленны и бесполезны (Альберт Великий, Малый алхимический свод).
К.Г. Юнг посвятил ряд своих работ (Психология и алхимия, Aion, Mysterium Coniunctionis, Дух Меркурий и др.) психологической интерпретации алхимической символики. По его мнению, она выражает свойственные человеческой психике архетипы, т.е. фундаментальные представления, принадлежащие сфере 'коллективного бессознательного':
Поскольку алхимики, за исключением очень немногих, не знали, что они вытащили на свет божий психические структуры, а думали, что объясняют трансформации материи, то никакие психологические соображения, проистекающие из чувствительности натуры, не могли удержать их от того, чтобы не обнажать основы души, что более осведомленный человек побоялся бы сделать. Именно поэтому алхимия так неотразимо привлекательна для психолога... Какими бы странными и невразумительными не казались непосвященным используемые алхимиками язык и образы, они становятся ясными и живыми, как только сравнительное исследование обнаруживает связь между символами и процессами в бессознательном (Mysterium Coniunctionis, с. 13).
Более подробное обсуждение связей между современной наукой и алхимией, герметизмом и пифагорейской философией приведено в главе 4.
Дух европейской науки до сих пор несет на себе печать всех этих факторов - переход от языка каббалы и алхимии к более простому языку математики, который произошел достаточно поздно, с этой точки зрения не принципиален. С точки зрения психологии, современная математическая символика отличается прежде всего меньшей эмоциональной насыщенностью.
До тех пор, пока именно заклинания связывают материальный мир неба и земли воедино, астрология и магия не могут стать астрономией и техникой. Любая арифметическая задача оставалась религиозной обязанностью, с ликованием выполняемой жрецами во время соответствующих церемоний... Сегодня мы констатируем, что 2 и 2 равняется 4, не повышая голоса. Сущность математической символики и заключается в том факте, что во время установления математических истин голос не повышается. Фигуры, кривые, треугольники и задуманы так, чтобы быть понятыми без всяких эмоций... Но это великое новшество. Никогда прежде язык не использовался без сильнейшего возбуждения. Шаман говорил с пеной у рта. Жрецы в храмах лежали в изнеможении (О. Розеншток-Хюсси, Бог заставляет нас говорить, с. 183).
С другой стороны, алхимики, как показывают исследования Юнга, играли с чрезвычайно мощными и опасными символами, коренящимися в глубинах бессознательного. Поиск Философского Камня был буквально вопросом жизни и смерти:
Глядя куда-то поверх моей головы, рабби продолжает:
- Не следует молиться о Камне, если не знаешь, что он означает.
- Камень означает истину! - откликаюсь я.
- Истина? - усмехается рабби точно так же, как император...
- Что же в таком случае означает Камень? - неуверенно допытываюсь я.
- Ответ на этот вопрос ... нельзя получить извне, он может прийти только изнутри!
- Да, конечно, я понимаю: Камень находят в сокровенных глубинах собственного Я. Но... потом-то он должен быть приготовлен, явлен вовне, и тогда, когда он произведен на свет, имя ему - эликсир.
- Внимание, сын мой, - шепчет рабби... - Будь осторожен, когда молишься о ниспослании Камня! Все внимание на стрелу, цель и выстрел! Как бы тебе не получить камень вместо Камня: бесцельный труд за бесцельный выстрел! Молитва может обернуться непоправимым (Г. Майринк, Ангел Западного окна).
Математическая символика более 'нейтральна' и вероятно именно это позволило ей стать 'общезначимой'. Общераспространенность математической символики и ее максимальная 'независимость от культуры' по-видимому свидетельствует, что базовые понятия (архетипы) числа, континуума и т. д. действительно являются эмоционально нейтральными. Возможно, они целиком принадлежат к высшим этажам человеческой психики (то, что по картографии сознания С. Грофа связано с трансперсональным уровнем) и в минимальной степени 'зацеплены' за низшие слои (секс, агрессия...). Впрочем,
Стиль любой зарождающейся математики полностью зависит от той культуры, в котрой она возникает, от особенностей народа, над ней размышляющего (О. Шпенглер, Закат Европы. О смысле чисел).
В связи с переходом от средневековой науки, базирующейся на астрологии и алхимии, к современной математике, следует упомянуть переплетение 'магического' и естественнонаучного языка в трудах врача, математика и астролога Дж. Кардано (1501-1576), описавшего свое решение кубического уравнения в сочинении Ars magna (великое искусство). Его биография напоминает авантюрный роман, а творческая деятельность полностью определялась влиянием мистического опыта. Современный английский математик Р. Пенроуз (см. список литературы) в особенности подчеркивает заслуги Кардано как одного из создателей теории вероятности, а также как математика, впервые использовавшего комплексные числа. Кроме того, начиная с Кардано можно проследить ту линию, которая в конце концов, через работы Абеля и Галуа о разрешимости алгебраических уравнений, привела к появлению современной теории групп, играющей столь большую роль в квантовой физике.
Галилей в 'Диалоге о двух системах мира' (см. Избранные труды, М., 1964) объявляет тайны пифагорейских чисел баснями. Однако его кардинальная идея о тайнах природы, записанных на языке математики (см. цитату в начале главы) по происхождению несомненно восходит к пифагорейской традиции. С этого времени, математическая символика почти полностью вытесняет каббалистическую, алхимическую и другие 'средневековые' символические системы. Успехи ньютоновской теории тяготения, прежде всего, вывод законов Кеплера (см. гл. 4), закрепили положение математики как 'царицы наук' (известное выражение К. Гаусса). Созданный трудами И. Ньютона, Г. Лейбница, И. Барроу, Х. Гюйгенса и других ученых XVII века математический анализ оказался исключительно эффективным средством решения самых разных задач. На протяжении XVIII века огромное количество важных результатов было получено Л. Эйлером, Ж. Лагранжем, П. Лапласом и многими другими математиками, механиками и астрономами.
Несмотря на 'прикладное' значение математики, в настоящее время она представляет собой самостоятельную науку с собственными объектами исследования и эстетическими критериями. Начиная с XIX века, центр тяжести в развитии математики постепенно смещается в сторону более четкого анализа используемых понятий, роста строгости и развития 'культуры' математического доказательства. Этот процесс сопровождается некоторыми издержками:
Математика наших дней походит на крупный оружейный магазин мирного времени. Его витрина заполнена роскошными вещами, которые своим остроумным, искусным, пленяющим глаз исполнением восхищают знатока, а подлинные истоки и назначение этих вещей, их способность поражать врага отходят в сознании на задний план вплоть до полного забвения (Ф. Клейн, Лекции о развитии математики в XIX столетии, т.1, М., Наука, 1989, с.86).