в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет (А. Пуанкаре, О науке, с.390).

Различие подходов и мировоззрений в вопросе об основаниях математики особенно ярко проявляется при рассмотрении проблем, связанных с идеей бесконечности. 'Стандартная' математика XX века базируется на теории множеств, разработанной в XIX веке Г. Кантором (а говоря более технически на так называемой системе аксиом Цермело-Френкеля). Согласно Кантору, существуют разные степени (мощности) бесконечности: бесконечность счетных множеств, таких, как ряд натуральных чисел, бесконечность континуума, например, отрезка единичной длины (ту же мощность имеют множества точек ограниченных и неограниченных тел в пространстве любой размерности), и бесконечности более высокого порядка. Последние могут быть получены как множество всех подмножеств исходного бесконечного множества.

Линия состоит из множества точек, плоскость - из бесконечного множества линий; книга - из бесконечного множества плоскостей; сверхкнига - из бесконечного множества книг (Х.Л. Борхес, Книга песка).

Эти идеи имеют большое психологическое значение.

...После того, как наше переживание становится реальным процессом в реальном мире, а наше феноменологическое время простирается, как нечто космическое, на весь мир, мы все-таки подменяем континуум точным понятием действительного числа, вопреки существенной неточности, неустранимой из того, что нам надо... Во всем этом не просто проявляется какая-то насильственная систематизация или стремление к простоте мысли, вызванное нашими практическими задачами и целями: в действие вступает подлинный разум, раскрывающий присущий действительности 'логос'... Конечно, наглядно созерцаемый и математический континуум не совпадают; между ними зияет пропасть. Тем не менее, существуют разумные мотивы, побуждающие нас стремиться к тому, чтобы от одного перейти к другому, - столь же разумные, как и те, которые заставляют при исследовании природы стремиться проникнуть 'за' пределы той реальности, которая основывается на актах опыта... - к стоящему за чувственными данными 'подлинно объективному', бескачественному физическому миру. (Г. Вейль, Математическое мышление, с. 159).

Теория множеств Кантора очень далеко ('бесконечно далеко') выходит за рамки чувственного опыта. Вообще говоря, никакие суждения относительно бесконечных множеств не могут быть эмпирически проверяемы:

Всякая теорема математики должна быть доступна проверке. Когда я высказываю эту теорему, я утверждаю, что все проверки, которые я испробую, приведут к желаемому результату, и даже если одна из этих проверок требует труда, превосходящего человеческие силы, я утверждаю, что если много поколений сочтут нужным заняться этой проверкой, то и в этом случае она удастся. Теорема не имеет другого смысла; это остается верным и тогда, когда в ее формулировке говорится о бесконечных числах; но так как все проверки могут быть проведены только для конечных чисел, то отсюда следует, что всякая теорема, относящаяся к бесконечным числам или вообще к тому, что называется бесконечным множеством... не может быть ничем иным, как сокращенным способом формулирования предложений, относящихся к конечным числам (А. Пуанкаре, О науке, с. 466).

Большие сомнения у многих математиков вызывала, например, аксиома выбора Цермело (если имеется любой набор - конечный или бесконечный множеств, то всегда можно образовать новое множество, выбрав по одному элементу из каждого множества, входящего в набор). С ее использованием доказываются весьма странные утверждения, скажем, теорема Банаха - Тарского. Согласно этой теореме, любое выпуклое тело можно разрезать на конечное число кусков таким образом, что, переставив их, мы получим выпуклое тело любого другого размера. Очевидно, что мир, описываемый аксиоматикой Цермело-Френкеля не может быть нашим физическим миром, где ничего подобного сделать нельзя. С другой стороны, отказ от аксиомы выбора существенно обедняет классическую математику. Возможно, правильный выход из этого тупика (согласно Пенроузу) состоит в допущении, что канторова теория множеств описывает платоновский мир математических идей, некоторые из которых имеют соответствие в нашем физическом мире. Ясно, однако, что слишком для многих математиков такой вывод окажется философски неприемлемым.

В то же время, канторова теория по-видимому не противоречит структуре человеческого мышления. Можно думать, что понятие континуума как некоторой первичной сущности, не сводимой к счетным множествам, действительно присуще человеческой психике. Каждый человек обладает, вероятно, зачатками топологического мышления, основанного на идее непрерывности. Г. Вейль говорил (Математическое мышление, с. 24-41) об абстрактной алгебре и топологии как двух альтернативных способах математического мышления (по выражению Вейля, за душу каждого математика борются ангел топологии и бес абстрактной алгебры). На уровне физиологии различные виды мышления связываются с полушариями человеческого мозга (правополушарное мышление непрерывное, образы, топология, левополушарное мышление - логическое, символы, буквы, слова, дискретное, алгебра). Ф. Меррелл-Вольф (в книге 'Математика, философия и йога') связывает 'обычное' двойственное сознание с дискретным пространством, а 'просветленное' недвойственное сознание - с непрерывным пространством, используя также аналогию с канторовой теорией множеств.

Интересно сопоставить два главных типа математического мышления с психологической классификацией личностей (см. книгу К.Г. Юнга 'Психологические типы' или труды по модной сейчас науке - соционике, напр., Е. Филатова, Соционика для вас, Новосибирск, 1994). Для это нужно принять во внимание, что в соответствии с данными психологических исследований пространство в восприятии человека обычно ассоциируется с непрерывной средой (символика воды, моря и т.д., см. главу 11), а восприятие времени дискретно (см. главу 15). В соционике восприятие преимущественно пространственных или временных отношений связывают с сенсорным или интуитивным типом личности, соответственно. Можно предположить наличие некоторых корреляций между этим делением и делением математиков на 'геометров' и 'алгебраистов' (на такую мысль наводят, в частности, интересные психологические наблюдения в книге Р. Пенроуза 'Новый разум императора', однако вопрос нуждается в дальнейших исследованиях). Между прочим, в соционике для характеристики различных типов личности и межличностных взаимодействий широко используется геометрическая символика. Хотя подобное использование математики выглядит несколько бедным и искусственным по сравнению с ее применением в естественных науках, оно лишний раз подчеркивает психологическую нагрузку математических символов.

До некоторой степени противопоставление 'счетного' мышления, основанного на понятии (натурального) числа, и топологического мышления, основанного на понятии непрерывности, соответствует различию количественного и качественного подходов. Современная математика является не только количественной, но и все больше развивает методы качественного анализа. Здесь уместно привести слова Руми:

Вы принадлежите к миру измерений, но пришли вы оттуда, где нет никаких измерений. Закройте первую лавку, пора открывать вторую.

Как мы отмечали выше, речь здесь идет о топологии, качественно исследующей свойства пространств и многообразий. С ней связаны такие дисциплины, как созданная Пуанкаре качественная теория дифференциальных уравнений, теория бифуркаций и теория особенностей гладких отображений; приложение этих теорий к широкому кругу естественнонаучных и даже социальных проблем получило известность под названием теории катастроф. Качественная сторона математики подчеркивается и в известном высказывании А. Пуанкаре:

Математика - это искусство называть разные вещи одинаковыми именами.

Слово 'имена' (возможно, употребленное бессознательно) подчеркивает связь математики с определенной символической системой. 'Символическая' основа естественных наук обсуждается в работах П.Флоренского.

Совокупные усилия [физиков и философов - Маха, Авенариуса, Гельмгольца...] утвердили общество в мысли, что действительно физическая теория есть не более как символическое описание, упрощенное и упорядоченное описание, хотя, кстати сказать, доныне еще не стало ясным, чего именно описание есть физика...

Метод познания природы, по Герцу, заключается в следующем: '... Мы создаем себе внутренние образы или символы внешних предметов и создаем мы их такими, чтобы логически необходимые последствия таких образов были всегда образами естественно необходимых изображаемых в них предметов' (П.Флоренский, Наука как символическое описание).

По словам В.Паули (см. K.V. Laurikainen, р.59), реальность символична по самой своей природе (в том смысле, как использовал слово 'символ' Юнг). При этом, как отмечалось выше, математические символы скорее всего связаны с высшими (трансперсональными) уровнями человеческой психики. По-видимому, в этом ключе можно трактовать на языке современной психологии обсуждавшиеся выше 'платонистские' представления о существовании особого 'божественного' мира математических идей. Правда, юнговское понятие архетипа не вполне соответствует платоновскому представлению об идее: 'платоновская идея статична, архетип является динамическим' (см. Laurikainen, цит. соч.). Более общий взгляд на архетип и его проникновение в мир обсуждается в рассказе Борхеса о дворце монгольского императора Кубла Хана.

Во сне Колриджа случайно прочитанный текст стал разрастаться и умножаться; спящему человеку грезились вереницы зрительных образов и даже попросту слов, их описывающих; через несколько часов он проснулся с убеждением, что сочинил - или воспринял - поэму примерно в триста строк... Первому сновидцу было послано ночью видение дворца, и он его построил; второму, который не знал о сне первого, - поэма о дворце. Если эта схема верна, то в какую-то ночь, от которой нас отделяют века, некоему читателю 'Кубла Хана' привидится во сне статуя или музыка... и, быть может, этому ряду снов не будет конца, а ключ к ним окажется в последнем из них... Возможно, что еще неизвестный людям архетип, некий вечный объект (в терминологии Уайтхеда) постепенно входит в мир; первым его проявлением был дворец, вторым - поэма. Если бы кто-то попытался их сравнить, он, возможно, увидел бы, что по сути они тождественны (Сон Колриджа).

Говоря иными словами, платоновские идеи (по крайней мере, в том виде, как их понимает Пенроуз) рассматриваются как некоторые вечные сущности, не зависящие от человеческого сознания. С точки же зрения современных психологических подходов (аналитическая и трансперсональная психология и т.д.), общие понятия (идеи, архетипы) скорее должны рассматриваться как возникающие при взаимодействии индивидуального сознания с морем бессознательного. Соответствующая символика подробно рассматривается в главе 12. Тогда математические понятия есть некоторые образы, 'высвечиваемые' индивидуальным сознанием в этом море. Тем самым, эти образы зависят как от сверхиндивидуальной (трансперсональной) реальности, так и от свойств человеческого ума. При таком подходе 'некомпьютерная' часть математики (в том числе все, связанное с существенным использованием понятий континуума и актуальной бесконечности) оказывается разновидностью мистического опыта.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату