На достаточно большом удалении от своего эмпирического источника и тем более во втором и третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от реальности, над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями; она все более и более становится искусством для искусства... Я убежден, что 'эмпирическая' подпитка была необходимым условием сохранения неувядаемой молодости и жизнеспособности математики в прошлом и что аналогичное утверждение останется в силе и в будущем (Дж. фон Нейман, цит. по: М. Клайн, Математика. Утрата определенности, с.338).

Вместе с тем, математика продолжает сохранять свою 'непостижимую эффективность в естественных науках', давшую название знаменитой статье Е. Вигнера:

Математический язык удивительно хорошо приспособлен для формулировки физических законов. Это чудесный дар, которого мы не понимаем и которого не заслуживаем. Нам остается лишь благодарит за него судьбу и надеяться, что в своих будущих исследованиях мы сможем по-прежнему пользоваться им (Е. Вигнер, Этюды о симметрии, с. 197).

Рискуя несколько шокировать 'сциентистски' настроенного читателя, можно тем не менее отметить очевидную аналогию между верой современного ученого в 'непостижимую эффективность математики' и верой человека традиционного общества в магию чисел. Примеры такой эффективности дествительно многочисленны и впечатляющи. Можно указать, например, на основное уравнение, описывающее свойства электрона - уравнение Дирака. Оно было установлено Дираком в 1927 г. из соображений 'математического изящества' и не только прекрасно описало все известные к тому времени свойства электрона, но и привело к предсказанию существования античастицы электрона - позитрона, впоследствии подтвержденному экспериментально. Еще более ярким примером является общая теория относительности (современная теория тяготения), созданная Эйнштейном в 1915 г. как достаточно формальная математическая конструкция почти без всякой экспериментальной основы и блестяще подтвержденная всеми последующими экспериментами и астрономическими наблюдениями. Однако, если мы захотим понять эти успехи, это может оказаться делом не более простым, чем объяснить, каким образом пересчет девушек (см. выше цитату из Фрэзера) может повредить их здоровью. 'Самое непостижимое в мире - то, что он постижим' (А. Эйнштейн), причем зачастую - постижим на математическом языке. Следующий отрывок дает описание 'мистического опыта', связанного с чистой математикой.

В математике, дополненной философией и психологией, я нашел то, что обычно дает человеку религия. Я осознал в этом присутствие реальности в форме необычайной чистоты, и предел внутреннего проникновения, которого я тогда достиг, хотя мне и недоставало соответствующего понимания и различения, не был превзойден с тех пор никогда, вплоть до седьмого числа прошлого месяца... То, чего я достиг благодаря математике на языке символов - а это был редкий уровень сознания, - должна была дополнить философия, так чтобы это могло стать ясным для понимания. Философия добавила способность размышления и сосредоточения к чистому свету математики (Ф. Меррелл-Вольф, Пути в иные измерения, с.145-146).

Вспомним также, что Эйнштейн в детстве воспринял 'Начала' Евклида как 'священную книгу по геометрии'.

Ряд крупных исследователей, пытающихся всерьез понять статус математических понятий и причину их эффективности, склоняется к тому или иному варианту платонизма. Так, выдающийся английский ученый - специалист в области математической физики Р. Пенроуз посвятил значительную часть своих книг 'Новый разум императора' и 'Тени разума' (см. список литературы) аргументации в пользу реального существования мира математических идей. Математические понятия, выражающие 'гармонию' мира, вечны и неуничтожимы подобно платоновским идеям:

В настроенной лире гармония - это нечто невидимое, бестелесное, прекрасное и божественное, а сама лира и струны - тела, то есть нечто телесное, сложное, земное и сродное смертному. Представь себе теперь, что лиру разбили или же порезали и порвали струны, - приводя те же доводы, какие приводишь ты, кто-нибудь будет упорно доказывать, что гармония не разрушилась и должна по-прежнему существовать. Быть того не может, скажет такой человек, чтобы лира с разорванными струнами и сами струны - вещи смертной природы - все еще существовали, а гармония, сродная и близкая божественному и бессмертному, погибла, уничтожилась раньше, чем смертное. Нет, гармония непременно должна существовать, и прежде истлеют без остатка дерево и жилы струн, чем потерпит что-нибудь худое гармония (Платон, Федон; см. также вынесенные в эпиграф строки Мандельштама).

Близких взглядов на сущность математических идей и понятий придерживался В. Гейзенберг (см. книгу 'Физика и философия. Часть и целое'). Другой выдающийся физик, В. Паули, полагал, что более правильным образом для того, чтобы охарактеризовать статус математических понятий, являются юнговские архетипы. В отличие от платоновских идей, они имеют динамический характер и не могут рассматриваться как вечные и неизменные, однако также принадлежат к некоторой реальности за пределами индивидуальных сознаний (см. книгу К. Лаурикайнена). Высокую оценку математики можно найти и в оккультной литературе.

Главный Источник чистой математики - Высшее, или Трансцендентное Сознание, и в этом причина, почему выводы всеобщего характера можно недвусмысленно передать на языке чистой математики... В определенном смысле, чистая математика далеко опередила сейчас то Сознание, которое реально возможно для человека (Ф. Меррелл-Вольф, Пути в иные измерения, с.280, 293).

В средние века вопрос об универсалиях (идеальных, общих понятиях) обсуждался в бурных и долгих спорах схоластов - реалистов и номиналистов: первые отстаивали их реальное (онтологическое) существование, а последние признавали их только в мышлении (как имена, символы единичных сущностей). Эти споры так ни к чему и не привели, а крайние точки зрения были осуждены церковью (особенно в связи с догматами о причастии и св. Троицей). Взгляды на математику Пенроуза и его единомышленников могут быть сопоставлены со средневековым реализмом.

'Номиналистский' подход в вопросе об основаниях математики состоит в предположении, что математические понятия являются результатом обобщения и абстрагирования свойств реального физического мира. Логически возможен и 'субъективно-идеалистический' подход, рассматривающий математические конструкции как произвольные творения человеческого ума, однако в этом случае вопрос о причинах 'непостижимой эффективности' математики по-видимому не может быть даже разумно сформулирован. Как и вообще в современной науке, наиболее распространен сейчас по-видимому 'позитивистский' подход, когда вопросы о мировоззренческом статусе используемых понятий и методов считаются ненаучными и бессмысленными. Применительно к математике, такой подход состоит в рассмотрении математических теорий как некоторых формальных конструкций:

В этом смысле математика рассматривает отношения в гипотетически-дедуктивном плане, не связывая себя никакой конкретной материальной интерпретацией. Ее интересует не истинность аксиом, а лишь их непротиворечивость... 'Математика - это наука, извлекающая определенные следствия' - сказал Б. Пирс в 1870 г., и это определение оставалось в моде на протяжении нескольких десятилетий. Мне кажется, что оно содержит весьма скудную информацию относительно подлинной природы математики... (Г. Вейль, Математическое мышление, М.: Наука, 1989, с. 21).

К подобным формалистическим подходам относится прежде всего аксиоматический метод, который пропагандировался и развивался на рубеже XIX и XX веков выдающимся немецким математиком Д. Гильбертом. Известно его шутливое (?) высказывание, что при изложении евклидовой геометрии можно везде заменить слова 'точки', 'прямые' и 'плоскости' на 'столы', 'стулья' и 'пивные кружки' (через два стола можно провести стул, и притом только один замечательно!). В широко известном списке 'проблем Гильберта' присутствовала даже проблема аксиоматизации физики. Аналогичный подход развивался Расселом и Уайтхедом по отношению к самой математике. По словам Б.Рассела,

Тот факт, что вся математика есть символическая логика, является одним из величайших открытий нашего времени (Принципы математики).

Такой подход сразу после своего возникновения вызвал резкие возражения ряда крупнейших математиков, прежде всего, А. Пуанкаре:

Настоящее математическое рассуждение есть настоящая индукция, во многих отношениях отличная от индукции физической, но, как и она, идущая от частного к общему. Все усилия, направленные на то, чтобы опрокинуть этот порядок и свести математическую индукцию к правилам логики, закончились без успеха, и эту неудачу трудно скрыть под маской особого языка, недоступного профанам (А. Пуанкаре, О науке, с.402,403).

Будущее развитие математики и логики действительно показало недостаточность гильбертовского подхода даже в пределах математики (не говоря уже об 'аксиоматизации физики', см. гл.6). Мы имеем в виду прежде всего знаменитую теорему Геделя, согласно которой даже в арифметике натуральных чисел существуют утверждения, неопровержимые и недоказуемые на основе любого конечного набора аксиом. (Приведенная здесь формулировка не вполне точна и нуждается в многочисленных пояснениях; см., например, упомянутые выше книги Р. Пенроуза или популярно написанную брошюру В.А. Успенского 'Теорема Геделя о неполноте', М., Наука, 1982; более систематическое изложение можно найти, например, в учебнике С. Клини 'Математическая логика', М., Мир, 1973). Близкое (и в действительности эквивалентное) утверждение состоит в существовании алгоритмически неразрешимых задач, то есть таких задач, которые в принципе не могут быть решены никаким компьютером, действующим на основе фиксированного набора правил. (Известно много конкретных примеров таких задач; скажем, не существует общего способа определить, можно или нельзя вымостить всю плоскость без зазоров, используя только многоугольные плитки из заданного конечного набора). Тем самым, математика неизбежно должна быть содержательной и 'человеческой' (или, согласно платонистским взглядам, сверхчеловеческой), но ни в коем случае не 'компьютерной', то есть бездумно выводимой из фиксированного набора правил:

Вы [сторонники взглядов Рассела и Гильберта] даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи - единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках. Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату