определенный тип предметов встречается в тройном виде' [224, с. 98 -99].(5)
Не следует полагать, что данный уровень осознания бесповоротно исчез. Во-первых, ребенок в процессе персонального развития вначале учится считать не абстрактные, а вполне конкретные вещи, испытывая затруднения при переходе от одних к другим; для него в момент счета существенно, что пересчитываемые предметы – это вкусные конфеты, а не 'неинтересные' деревья за окном. Во-вторых, и современный взрослый интуитивно ощущает, что, скажем, число т р и – в представлении ли о трехмерном пространстве, трех грамматических лицах, трех былинных богатырях – является носителем качества, смысла соответствующего концепта или образа, но при этом совершенно не отдает отчета, почему во всех этих случаях фигурирует одно и то же число. Сама постановка такого вопроса в культуре, где число воспринимается в функции акциденциального, как результат замера величины, выглядит несущественной и наивной. В результате тройки в модели социальных классов (богатого, среднего, бедного), в системе грамматических лиц, размерности физического пространства и т.д. кажутся
Пифагорейцы обнаруживали в числах от единицы до десяти набор неких имманентных, обязательных свойств. Так или иначе того же подхода придерживалось и средневековье: например, теологи настаивали, что Божественных Ипостасей должно быть именно три, схоласты, опираясь на авторитет Аристотеля, говорили о трехзвенности силлогизма (двух посылках и заключении), о четырех основных видах логических суждений: общеутвердительного, общеотрицательного, частноутвердительного, частноотрицательного, – и Михаил Пселл для мнемонической иллюстрации отношений контрарности и контрадикторности предложил в ХI в. так называемый логический квадрат. В комплементарной теневой области средневековой культуры пребывали алхимики, астрологи, каббалисты. Первые, используя положения неоплатоников, связывали ряд чисел – единицу, двойку, тройку, четверку, семерку и др. – с метафизикой, полагая обязательным наличие, к примеру, семи металлов. Сходным образом астрологи почитали принципиальным существование именно семи известных тогда планет. Значительную дань теологии и алхимии отдал, как известно, Ньютон. Любопытно, что обладавший сильнейшим стремлением к логической точности Кант уже в другую эпоху пытается обосновать трехмерность физического пространства (его подход, как показало время, оказался хотя и не исчерпывающим, но отнюдь не пустым) или логическую обязательность факта тех же семи планет (что тут же было опровергнуто астрономией, открывшей восьмую планету).
В античных и средневековых исследованиях, не исключая сферы спекуляций о числах, очень трудно отделить зерна от плевел. Вдаваться в их хитросплетения, предварительно не дистанцировавшись от них, по всей видимости, даже контрпродуктивно – это вопрос интеллектуальной гигиены: слишком велика вероятность заразиться, повлекшись по пути в никуда. Поэтому большинство ответственных математиков Нового времени радикально перерубило канат, обратившись к вышеупомянутому акциденциальному, чисто количественному числу. Более того, число как таковое подспудно вытесняется на периферию математики, становящейся главным образом символьной: в центре внимания оказываются заимствованная у арабов и интенсивно развивающаяся новыми европейцами алгебра, а затем и дифференциальные уравнения. Хотя натуральные числа не полностью утрачивают свою конституирующую 'качественную' роль – например, квадратные, т.е. второй степени, алгебраические уравнения отличаются по своему поведению и методам решения от линейных, кубических, четвертой степени и т.д., отчасти сходным образом обстоит дело и с дифференциальными уравнениями разных порядков, – но этот момент не педалируется, не становится предметом пристального интереса. В целом же назначение подобных чисел практически сводится к чисто указательному, индексному, а в обозначениях, индексах, в сущности, нечего обсуждать.
Аналогичный процесс элиминации натурального числа и связанных с ним элементарных операций вплоть до ХIХ в. наблюдался и в естественных науках, особенно в физике. Последняя, как мы помним, была радикально геометризована и, кроме того, опираясь на экспериментальный фундамент, поставила во главу угла
Ситуация начинает постепенно или скачкообразно меняться с середины ХIХ и особенно в ХХ в. Во-первых, протекает революция в самой математике, обратившейся лицом к простейшим фундаментальным аспектам действительности. Возникают новые области: теория множеств, топология, математическая логика, высшая алгебра, изучающая строение объектов самой различной природы. Во-вторых, в естественных науках возникает встречный интерес к простейшим структурам: о физике, химии см.
К данному вопросу предстоит возвращаться, но это целесообразнее в контексте более предметных исследований, когда появится возможность снабжать отвлеченные положения конкретными иллюстрациями. Пока же ограничимся несколькими частными замечаниями, необходимыми для текущего раздела.
Для раскрытия тем первых двух глав нам потребуется далеко не весь корпус арифметических и алгебраических знаний, объединенных рамками элементарной математики и, соответственно, в том или ином виде известных древним, являющихся атрибутом современного массового сознания. Прежде всего будут востребованы представления о целых числах, навыки комбинирования. Собственно говоря, сам счет есть одна из простейших комбинаторных операций, когда мы вправе отвлечься от различий рассматриваемых предметов друг от друга, а значит, и от порядка их размещения, следования. Подобное абстрагирование от различий – 'все единицы одинаковы' – может быть как сознательным, что отвечает достаточно высокой ступени развития, так и автоматическим, 'естественным'. Например, имеет ли значение для вороны, что первого приблизившегося к ней человека зовут Джон Смит и у него длинный аристократический нос, а второго – Иван Петров и у него нос картошкой? Ворона не знакома ни с тем, ни с другим, и оба в равной мере – источник опасности. Однако запомнить, что людей двое, в высшей степени целесообразно: даже если один из них удалился, второй может подстерегать из укрытия, чтобы запустить камнем. Сходное 'абстрагирование' полезно и на этапе беглого 'экспресс-анализа', когда необходимо оперативно оценить ситуацию: так кошка, вернувшись с охоты, проверяет, все ли котята на месте, и не нужно ли кого-либо из них поискать.
Элементарные процедуры, аналогичные счету, играли исключительно важную роль в процессе выживания человека, обладая, без преувеличения, экзистенциальной значимостью. Первобытные племена, вступавшие в натуральный обмен, скажем, шкурок зверей на плоды, раскладывали их кучками в два параллельных ряда, устанавливая взаимно-однозначное соответствие между разнородными товарами, выявляя их общий эквивалент. Впоследствии в дело вступили более абстрактные предметы: счетные камешки, палочки, зарубки, загибаемые пальцы. Соответствующий психомоторный, 'бихевиористский' аспект не исчез до сих пор: мы тыкаем пальцем в пересчитываемые вещи, фиксируя количество указательных движений, или по-прежнему используем загибание пальцев. В средние же века абацисты спорили с алгоритмиками, как следует проводить вычисления: с помощью вспомогательных предметов (счетной доски, абаки, по которой передвигались счетные марки) или посредством письменной записи, выполняемой по определенному общему правилу [199, с. 5]. Тогда победили алгоритмики.
В 1920 – 30-е гг. Г.Динглер проводит исследование экспериментальных корней абстрактных математических понятий. Так, понятие плоскости координируется с ремесленной технологией изготовления шлифованных поверхностей. 'Три стальные поверхности ‹…› шлифуются друг о друга до тех пор, пока не станут полностью подходить друг к другу' [120, с.108]