разность энергий, – то присутствие постоянного члена ?? (
Энергия тяготения определяет прочность цепей, «привязывающих» тело к Земле. Как порвать эти цепи, как добиться того, чтобы брошенное с Земли тело не вернулось на Землю? Ясно, что для этого нужно придать телу большую начальную скорость. Но каково же минимальное требование?
По мере отдаления от Земли потенциальная энергия выброшенного с Земли тела (снаряда, ракеты) будет расти (абсолютное значение
Необходимо, чтобы тело сохраняло кинетическую энергию до тех пор, пока его потенциальная энергия практически не упадет до нуля. Перед отправлением снаряд обладал потенциальной энергией ?? (
Таким образом, мы приходим к простому условию. Для того чтобы тело массы
Скорость снаряда должна быть при этом доведена до значения так называемой второй космической скорости
или, так как
Значение
Масса Луны в 81 раз меньше массы Земли; радиус ее меньше земного в четыре раза. Поэтому энергия тяготения на Луне в двадцать раз меньше, чем на Земле, и для отрыва от Луны достаточно скорости 2,5 км/с.
Кинетическая энергия
Таким образом, три скорости, о которых идет речь, связаны простым соотношением:
Чему же должна равняться скорость
Определим прежде всего значение скорости, необходимой для преодоления одного лишь притяжения Солнца.
Как мы только что показали, скорость, нужная для выхода из сферы земного притяжения снаряда, отправляемого в путешествие, в sqrt(2) раз больше, чем скорость вывода на орбиту земного спутника. Эти рассуждения в равной степени относятся и к Солнцу, т.е. скорость, нужная для ухода от Солнца, в sqrt(2) раз больше, чем скорость спутника Солнца (т.е. Земли). Поскольку скорость движения Земли вокруг Солнца составляет примерно 30 км/с, то скорость, необходимая для ухода из сферы притяжения Солнца, равна 42 км/с. Это очень много, однако для отправления снаряда к далеким звездам надо, разумеется, использовать движение земного шара и запускать тело в ту сторону, куда движется Земля. Тогда нам нужно добавить всего 42 ? 30 = 12 км/с.
Теперь мы можем окончательно вычислить третью космическую скорость. Это скорость, с которой надо вывести ракету, чтобы, выйдя из сферы земного притяжения, она имела скорость 12 км/с. Воспользовавшись формулой, приведенной только что, получим:
откуда
Итак, имея скорость около 11 км/с, тело покинет Землю, но «далеко» такой снаряд не уйдет; Земля его отпустила, но Солнце не даст ему свободы. Он превратится в спутника Солнца.
Оказывается, что скорость, необходимая для межзвездного путешествия, всего лишь в полтора раза больше скорости, нужной для путешествия по солнечной системе внутри земной орбиты. Правда, как уже говорилось, всякое заметное увеличение начальной скорости снаряда сопряжено с немалыми техническими трудностями (см. стр. 82).
Как движутся планеты
На вопрос, как движутся планеты, можно ответить кратко: повинуясь закону тяготения. Ведь силы тяготения – единственные силы, приложенные к планетам.
Так как масса планет много меньше массы Солнца, то силы взаимодействия между планетами не играют большой роли. Каждая из планет движется почти так, как это диктует ей сила притяжения одного лишь Солнца, словно других планет и не существует.
Законы движения планеты вокруг Солнца следуют из закона всемирного тяготения.
Впрочем, исторически дело было не так. Законы движения планет были найдены замечательным немецким астрономом Иоганном Кеплером до Ньютона без помощи закона тяготения на основании почти двадцатилетней обработки астрономических наблюдений.
Пути, или, как говорят астрономы, орбиты, которые описывают планеты около Солнца, очень близки к окружностям.
Как связан период обращения планеты с радиусом ее орбиты?
Сила тяготения, действующая на планету со стороны Солнца, равна