возможностей, высокой степенью преемственности и взаимозаменяемости образцов различных лет разработки.

Переносные зенитные ракетные комплексы ' Стрела-2' и 'Стрела-3'

Китайская 'пиратская' копия 'Стрелы-2М' — Hongying-5B (HN-5B)

К концу 1950-х гг. в СССР поступила первая, еще несколько противоречивая информация о том, что в США в 1958 г. началась разработка носимого ЗРК с ракетой, оснащенной пассивной тепловой головкой самонаведения. Более того, в это время по американскому телевидению была показана стрельба по воздушной цели такой ракетой, запускаемой из пусковой трубы с плеча стрелка. Этот факт свидетельствовал о реальной возможности создания носимого зенитного ракетного оружия. Как известно, такой комплекс под названием 'Ред Ай' в США появился к 1965 г.

Перспективы применения переносных ЗРК не сводились только к дополнительному насыщению войск средствами ПВО и распространению их подчинения до уровня командиров даже подразделений. Переносные ЗРК могли применяться в условиях, исключающих использование других зенитных средств — при бое в городе, в горах, в лесных массивах. Они могли использоваться небольшими диверсионно- разведывательными группами и подразделениями десантников, в том числе и в глубоком тылу противника.

Работы по созданию отечественного переносного зенитного ракетного комплекса (ПЗРК) 'Стрела-2' начались в соответствии с Постановлением СМ СССР от 25 августа 1960 г. № 946–398 о проведении работ по комплексу 'Стрела'. Данное постановление достаточно широко ставило задачу создания легкого ЗРК 'Стрела', что обусловило возможность разработки в дальнейшем двух существенно различных комплексов — самоходного 'Стрела-1' и переносного 'Стрела-2'.

Головным разработчиком комплекса 'Стрела-2' (9К32), состоящего из пусковой трубы с источником питания, ЗУР 9М32 и пускового устройства, было назначено специальное конструкторское бюро (СКБ) ГКОТ во главе с Б.И. Шавыриным — единственное из ряда запрошенных КБ, согласившееся взяться за разработку переносного комплекса. После смерти Б.И. Шавырина в 1965 г. главным конструктором стал С.П. Непобедимый. Спустя год СКБ было переименовано в Конструкторское бюро машиностроения (КБМ) МОП.

На начальной стадии работ сама возможность создания переносного ЗРК представлялась очень проблематичной. Разработка требований к комплексу 'Стрела-2' и его проектирование проходили неординарно, в плотном творческом взаимодействии военных, проводивших глубокие научные исследования в НИИ-3 ГАУ, и конструкторов промышленности, выдвинувших ряд смелых технических идей. Проектирование переносного ЗРК началось с 'мозговой атаки': Б.И. Шавырин и группа специалистов на две недели отрешились от текущих дел и в ходе обмена идеями сформировали облик будущего комплекса 'Стрела-2' и разработали предложения по проекту ТТТ к комплексу.

Позже поступившие из-за рубежа сведения о комплексе 'Ред Ай' подтвердили большое сходство технического облика переносного ЗРК 'Стрела-2' с его зарубежным аналогом. Независимо друг от друга конструкторы двух стран признали наиболее целесообразными схожие технические решения. Эскизный проект переносного ЗРК 'Стрела-2' был представлен в конце 1961 г.

Важнейшим элементом ЗУР переносного комплекса стала миниатюрная тепловая головка самонаведения (ТГСН), разработка которой была поручена ОКБ-357 Ленинградского совнархоза (вскоре оно вошло в состав Ленинградского оптико-механического объединения — ЛОМО). Главным конструктором головки стал В.Э. Пиккель, которого впоследствии сменил О.А. Артамонов. В создании тепловой ГСН участвовали сотрудники Государственного оптического института (ГОИ), возглавляемого Г.А. Горячкиным.

К тому времени тепловые ГСН уже использовались в серийных образцах отечественной ракетной техники — в авиационных самонаводящихся ракетах класса 'воздух-воздух' К-13 и К-8МТ. Примененная в ракете 9М32 система управления была теоретически обоснована профессором Военно-воздушной инженерной академии им. Н.Е. Жуковского А.А. Красовским. Основной трудностью в разработке тепловой ГСН для ЗУР 9М32 было создание устройства гиростабилизации (координатора головки) с малыми массогабаритными характеристиками. Как стало известно, американские специалисты в процессе разработки тепловой ГСН для ЗРК 'Ред Ай' нашли оригинальное решение по совмещению параболического зеркала головки с силовым гироприводом на основе трехстепенного гироскопа, что позволяло избавиться от гироплатформы, используемой в более крупных ракетах, и двухканального управления, которые применялись, в частности, в авиационных ракетах класса 'воздух-воздух', и перейти к одноканальному управлению с помощью указанного небольшого гироскопа.

Но из-за недостаточно совершенной элементной базы, используемой в то время в отечественных гиростабилизированных ГСН, реализация этой идеи вызывала много сомнений, в частности, в наиболее компетентной советской организации по разработке тепловых ГСН — ЦКБ 'Геофизика'.

Тем не менее разработчики комплекса 9К32 сумели преодолеть все трудности. В ЛОМО была создана тепловая ГСН массой не более 1,2 кг в требуемых для ракеты габаритах. Наведение ЗУР производилось по методу пропорциональной навигации, не требующему от ракеты больших поперечных перегрузок.

Сложной представлялась и задача создания двигательных установок ракеты. Старт ЗУР должен был осуществляться из пусковой трубы с плеча стрелка-зенитчика из положений стоя, с колена, из окопа и даже при нахождении заднего среза пусковой трубы в воде. Требовалось также обеспечить возможность пуска ЗУР из люков боевых машин, движущихся со скоростью до 20 км/ч. Нужно было исключить поражение стрелка-зенитчика струей продуктов сгорания двигателя. Выход был найден в реализации схемы запуска маршевого двигателя с использованием специально разработанной пиротехнической задержки после вылета ЗУР из пусковой трубы ЗУР, на безопасном для стрелка расстоянии. Выброс ЗУР из трубы достигался задействованием выбрасывающего заряда, полностью сгорающего в пусковой трубе.

Трудной задачей стало обеспечение соизмеримой с полетным временем ракеты продолжительности работы маршевого заряда двигателя. Очень легкая ЗУР с притупленным обтекателем тепловой ГСН быстро тормозилась после окончания работы двигателя. С учетом высоких требований ЗУР по маневренности, при наведении на цель пассивный участок ее полета мог использоваться только в минимальной мере. Для снижения аэродинамического сопротивления ракету выполнили в очень большом удлинении и малом диаметре — 76 мм. При существующих скоростях горения топлива требуемая продолжительность работы (порядка 10–15 с) многократно превышала максимально достижимую для традиционных шашек с центральным каналом и малым сводом горения. С другой стороны, она была в несколько раз меньше соответствующей бесканальному заряду топлива с горением по плоскому торцу. После длительной отработки удалось создать заряд смесевого топлива с требуемой длительностью работы за счет реализации так называемой кратерной формы поверхности горения. Необходимая скорость горения (до 40 мм/с) достигалась путем армирования заряда металлическими проволочками для ускоренного прогрева внутренних слоев топлива, обеспечивающего их быстрое воспламенение и опережающее выгорание топлива в объемах, непосредственно прилегающих к проволочкам.

При этом двигатель обеспечивал и двухрежимную расходную характеристику, быстро разгоняя ракету до максимальной скорости и поддерживая ее в течение 5 и более секунд.

Наряду с топливным зарядом маршевого двигателя немало усилий в отработке потребовал и заряд газогенератора, обеспечивающего работу рулевых машинок и турбогенератора системы полетного электроснабжения. Основными проблемами стали нестабильность внутрибаллистических характеристик и засорение фильтров фрагментами бронировки порохового заряда.

Для топливного заряда выбрасывающего двигателя наибольшие трудности были связаны с обеспечением требуемой расходной характеристики при крайне малой (менее десятой доли секунды) продолжительности его работы.

Для снижения массы аэродинамических рулей и рулевых машинок впервые в Советском Союзе на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату