Напряженные усилия специалистов привели к разработке и промышленному выпуску камерных 8- слойных шин 1525x400-/68 (модель ИД-15), которые по всем статьям превзошли своих предшественниц. Новая шина наружным диаметром 1515 мм и шириной 400 мм могла работать с внутренним давлением воздуха от 0,25 до 2,5 кг/см
Колеса, на которые монтировались шины Я-1/5 и ИД-15, комплектовались разъемными ободьями, состоящими из наружной и внутренней частей, скрепленных между собой и дисками 24 болтами и гайками. Размерность обода для первой шины 286-768, для второй 420-762. Примечательно, что обе части обода изготовлены из стеклопластика, а колесные диски, которыми колесо крепилось к ступице, выполнены стальными. Чтобы разместить колесный редуктор, обод сделан несимметричным, его внутренняя часть вдвое шире наружной.
Использование независимой подвески, колесных редукторов и колес большого размера обеспечило дорожный просвет у ПЭУ- 560 мм под рычагами подвески и 660 мм под днищем корпуса.
Любой автомобиль высокой проходимости, а тем более амфибию невозможно представить без централизованной системы регулирования давления воздуха в шинах. Ведь именно плавающие колесные машины американцы впервые оснастили подобным устройством, позволившим преодолевать топкую прибрежную полосу после форсирования водной преграды во время проведения боевых операций второй мировой войны.
Система регулирования давления воздуха в шинах (СРДВШ) является одним из наиболее действенных и универсальных средств, обеспечивающих приспособляемость ходовой части полноприводного автомобиля и изменяющимся дорожным условиям и повышает его проходимость.
Шина в зависимости от величины давления воздуха в ней в 2-4 раз изменяет площадь опоры на фунт, снижая в 3-5 раза удельное давление в пятне контакта, что благоприятно отражается на сцепных и опорных качествах вездехода. Регулирование давления воздуха в шинах во время движения автомобиля позволяет водителю достигать оптимального сочетания сопротивления движению и силы тяги.
Применение СРДВШ существенно повысило подвижность ПЭУ в условиях бездорожья (на снежной целине, пахоте, песке, заболоченных участках, грунтовых дорогах, в период осенней и весенней распутицы), обеспечила движение машины при проколах одного из колес без его смены, дало возможность выравнивать корпус автомобиля при работе грузоподъемного крана на уклонах, наблюдать за величиной давления воздуха и регулировать его в зависимости от свойств опорной поверхности.
Испытания показали, что большее увеличение тягового усилия в 1,5-2 раза было достигнуто на сухом песке и снежном покрове, а наименьшее сопротивление качению – на рыхлых и насыщенных водой фунтах.
Водитель, воздействуя на кран управления давлением, который вместе с шинными кранами прикреплен на щитке у левого борта, имеет возможность регулировать давление воздуха в шинах, не выходя из кабины. При перемещении рычага крана управления из нейтрального в положение «Накачка» система регулирования воздуха соединяется с баллонами пневматической системы тормозов, и воздух поступает в шины. Перевод рычага в положение «Спуск» приводит к тому, что СРДВШ соединяется с атмосферой, обеспечивая выпуск воздуха из шин.
Шинные краны, установленные в системе после крана управления, позволяют регулировать давление воздуха раздельно в шинах правого и левого борта, а запорные краны, расположенные в крышках тормозных барабанов колес, дают возможность отключить любую шину от СРДВШ, например, при ее повреждении.
Уже в ходе эксплуатации поисково-эвакуационной установки выяснилось, что малая скорость снижения давления воздуха в шинах от номинальной величины до минимальной, обусловившая несвоевременное использование СРДВШ, отрицательно сказывается на средней скорости движения автомобиля и вероятности успешного преодоления тяжелых участков пути. Имеющийся опыт показал, что от момента обнаружения труднопроходимого участка до начала движения по нему снизить давление до оптимальной величины без остановки машины не удается. Это объяснялось тем, что для изменения давления с 2,0 кг/см
Исследования с целью увеличения скорости выпуска воздуха из шин показали, что сокращение в несколько раз времени, необходимого для снижения давления в шинах большого объема, возможно посредством установки в магистралях воздуховодов, идущих к шинам клапанов быстрого выпуска (клапаны управления давлением), изобретенных специалистами СКБ ЗИЛ. Наличие таких устройств снизило время изменения давления воздуха в шинах ПЭУ размерностью 1525x400-768 от номинального до 0,5 кг/см
Экспериментально установлено, что при эксплуатации ПЭУ на дорогах с твердым покрытием наивыгоднейшие значения давления воздуха в шинах 2,0 кг/см
Совершенствование СРДВШ также сократило время, необходимое для увеличения давления в шинах от 0,5 до 1 кг/см 2 с 8 до 5 минут. Впервые в практике отечественного автостроения несущая система амфибии была выполнена в виде сварной алюминиевой рамы, связанной резьбовыми соединениями с корпусом, отформированным из полиэфирной смолы, армированной стекловолокном.
Рама, сваренная из профилей алюминевого сплава повышенной коррозионной стойкости, является основным силовым элементом, воспринимающим нагрузки, действующие на автомобиль. На ней установлены двигатель с гидропередачей, агрегаты трансмиссии, подвески, грузоподъемное устройство, ложе для размещения СА, рулевое управление, водоходный движитель и другое оборудование.
Необходимую прочность рамы на изгиб и кручение при ее минимальном весе создают лонжероны, изготовленные из специального швеллерного профиля переменного сечения, соединенные между собой поперечинами при помощи косынок. Крестообразный раскос, приваренный в средней наиболее нагруженной части рамы, облегчает приспособляемость подвески при движении транспортного средства в условиях (грунтовые дороги с разбитой колеей, пересеченная местность), вызывающих кручение рамы. В СКБ была проведена огромная экспериментально-исследовательская работа по технологии сварки нагруженных конструкций из алюминиевых сплавов, к каковым относится и рама.

Геометрические размеры и форма корпуса выбраны таким образом, чтобы, с одной стороны, иметь достаточную продольную и поперечную устойчивость при движении по воде со спускаемым аппаратом на борту, с другой – снизить, насколько это возможно, сопротивление воды. Для упорядочения обтекания носовой части корпуса она имеет криволинейную поверхность и снабжена продольными ребрами (на первом образце их было два, на последующих увеличили до пяти), которые к тому же играют роль защитных элементов при швартовке.
Большое значение имели результаты испытаний морской 20-тонной амфибии ЗИЛ-135П, изготовленной в 1965 г. Ее несущий корпус был сделан из стеклопластика, который полностью доказал свою состоятельность как конструкционный материал, обладающий высокими прочностными свойствами.