7

Я исхожу из предположения, что пишу для читателей, которые преисполнены или были преисполнены в прошлом надлежащим духом амбиций. Первейшая обязанность человека, во всяком случае, молодого человека, состоит в том, чтобы быть амбициозным. Амбиция - благородная страсть, которая на вполне законном основании может принимать многие формы. Нечто благородное было в амбициях Аттилы[101] или Наполеона[102], но самые благородные амбиции движут теми, кто оставляет после себя нечто, имеющее непреходящую ценность.

'Что здесь, на уровне песка, Меж сушею и морем, Воздвигнуть мне иль написать Пред тем, как ночь наступит? Поведай мне о рунах, чтоб их я начертал, Они помогут волн сдержать напор, Иль о бастионах, чтобы их воздвиг я На срок подолее того, что мне отпущен'.

Амбиции были движущей силой почти всех лучших творений этого мира. В частности, практически все существенные вклады в человеческое счастье были сделаны амбициозными людьми. Приведем два знаменитых примера: разве Листер[103] и Пастер[104] не были амбициозными людьми? Или, на более скромном уровне, Кинг Жиллетт и Уильям Уиллетт? Кто в последнее время в большей степени способствовал человеческому счастью, чем они?

Особенно хорошие примеры можно почерпнуть из физиологии, просто потому, что она принадлежит к числу заведомо 'полезных' наук. Мы должны уберечься от ошибки, обычно совершаемой апологетами науки, - ошибки, которой подвержен, например, профессор А.В.Хилл. Согласно этой ошибке, принято считать, будто те люди, которые в наибольшей степени способствовали процветанию человечества, много думали о своей высокой миссии во время своей работы, короче говоря, будто физиологи обладают особенно возвышенными душами. Физиолог действительно был бы рад вспомнить о том, что его работа облагодетельствует человечество, но мотивы, дающие ему силу и вдохновенье для его свершений, неотличимы от мотивов классического учёного-гуманитария или математика.

Существует множество весьма респектабельных мотивов, которые могут побудить людей проводить исследования, но три мотива гораздо важнее всех остальных. Первый мотив (без которого всё остальное обратилось бы в ничего) - интеллектуальное любопытство, жажда познать истину. Второй мотив - профессиональная гордость, беспокойство, которое можно унять, только свершив задуманное, стыд, охватывающий любого уважающего себя мастера, когда его творение недостойно его таланта. Наконец, третий мотив - амбиция, жажда заслужить репутацию и добиться положения, даже власти или денег, которые приносит с собой положение. Возможно, приятно ощущать, что ты сделал 'свою работу', добавил радости или умерил страдание других, но это не является мотивом, побудившим тебя сделать твою работу. Поэтому если математик, химик или даже физиолог скажет мне, что движущей силой в его работе было желание облагодетельствовать человечество, то я не поверю этим словам (равным образом не стану думать о том, кто их произнесет лучше, если даже поверю). В действительности он руководствовался теми мотивами, которые я привёл выше, и в них нет ничего такого, чего следовало бы стыдиться любому достойному человеку.

8

Если интеллектуальное любопытство, профессиональная гордость и амбиция - доминирующие побудительные мотивы исследования, то, несомненно, ни у кого нет лучших шансов удовлетворить им, чем у математика. Предмет его исследований - прелюбопытнейший; нет ни одного другого предмета, в которых истина откалывала бы самые причудливые штуки. Математика обладает разработанным до тончайших деталей увлекательнейшим аппаратом исследований и оставляет беспрецедентный простор для проявления высокого профессионального мастерства. Наконец, как неоднократно доказывает история, математическое достижение, какова бы ни была его внутренняя ценность, обладает наибольшей 'долговечностью' по сравнению с достижениями всех других наук.

Мы можем убедиться в этом даже на примере полуисторических цивилизаций. Вавилонская и ассирийская цивилизации пали; Хаммурапи[105], Саргон[106] и Навуходоносор[107] - ныне пустые имена, тем не менее вавилонская математика и поныне представляет интерес, а вавилонская шестидесятеричная система счисления всё ещё применяется в астрономии. Но самым убедительным примером служит, конечно, Древняя Греция.

Древние греки были первыми математиками, чьи результаты актуальны для нас и поныне. Математика Древнего Востока может быть интересна для любознательных, но древнегреческая математика - 'вещь' вполне реальная. Древние греки впервые заговорили на языке, который понятен современному математику. Как сказал мне однажды Литлвуд, древние греки - не умные школьники и не 'кандидаты на стипендию' за отличные успехи, а 'ученые из другого колледжа'. Поэтому древнегреческая математика сохранила 'непреходящее' значение - более непреходящее, чем даже древнегреческая литература. Архимеда[108] будут помнить, даже когда забудут Эсхила[109] потому, что языки умирают, тогда как математические идеи бессмертны. Возможно, 'бессмертны' - глупое слово, но, вероятно, математик имеет лучший шанс на бессмертие, что бы оно ни означало.

Математику нет необходимости всерьёз опасаться, что будущее будет несправедливо по отношению к нему. Бессмертие часто бывает смешным или жестоким: лишь немногим из нас суждено стать Огом, Ананией или Галилеем[110]. Даже в математике история иногда выкидывает странные трюки: Ролль[111] фигурирует во всех учебниках математического анализа, как если бы он был математиком того же ранга, как и Ньютон; Фарей обрел бессмертие потому, что не понял теорему, которую Харос строго доказал четырнадцатью годами раньше; имена пяти состоятельных норвежцев вошли в биографию Абеля только из-за акта сознательного слабоумия, исполненного с сознанием выполненного долга за счёт их величайшего соотечественника. Но в целом история науки вполне справедлива, и это особенно верно в отношении математики. Ни одна другая наука не обладает столь чёткими или единодушно принятыми стандартами, и люди, о которых хранят память математики, почти всегда заслуживают этого. Математическая слава, если вы сможете получить её, одна из самых прочных и долговечных.

9

Всё это весьма приятно для донов и особенно для профессоров математики. Иногда юристы, политики или бизнесмены высказывают предположение о том, что академическая карьера привлекает главным образом осторожных и неамбициозных людей, более всего заботящихся о собственном комфорте и безопасности. Такое мнение полностью неосновательно. Дон отказывается кое от чего, в частности, от

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату