шансов зарабатывать большие суммы денег; например, профессору очень трудно заработать в год 2000 фунтов стерлингов. Прочность положения, естественно, служит одним из соображений, облегчающих отказ от перспективы финансового процветания. Но Хусман отказался бы стать лордом Саймоном[112] или лордом Бивербруком[113] не по этой причине. Он бы отверг их карьеры из-за своих амбиций: ему бы претила мысль, что через какие- нибудь двадцать лет его забудут.

Но как больно сознавать, что при всех преимуществах академической карьеры вы не застрахованы от неудачи. Помню, как Бертран Рассел рассказывал мне о своём страшном сне. Ему снится, что он находится на верхнем этаже университетской библиотеки в году эдак 2100-м. Помощник библиотекаря обходит книжные полки с огромной корзиной. Он берет с полки одну за другой книги, смотрит их названия и либо ставит обратно на полку, либо швыряет в корзину. Наконец, очередь доходит до трёхтомного издания, в котором Рассел узнает последний сохранившийся экземпляр 'Principia Mathematica'[114]. Он снимает с полки один из томов, перелистывает несколько страниц, явно озадаченный странными символами, захлопывает том, прикидывает его на руке и останавливается в нерешительности...

10

Математик, подобно художнику или поэту, создаёт образы. Если его 'образы' долговечнее их образов, то потому, что они состоят из идей. Художник создаёт свои образы из форм и цветов, поэт - из слов. Изображение может воплощать 'идею', но эта идея находится на уровне обычного здравого смысла и малосущественна. В поэзии идеи значат гораздо больше, но, как настаивает Хусман, важность идей в поэзии обычно преувеличивают: 'Я не могу согласиться с тем, что существует нечто, именуемое поэтическими идеями... Поэзия - это не то, что сказано, а то, как сказано'.

'Бушующего моря вод не хватит, чтоб смыть помазанье с чела владыки-короля'.

Какие строки! Но могут ли выраженные в них идеи быть более банальными и более фальшивыми? Мы видим, что скудность идей вряд ли влияет на красоту словесного узора. С другой стороны, у математика нет другого материала для работы, кроме идей, из-за чего создаваемые им образы с большей вероятностью будут существовать, так как идеи изнашиваются со временем меньше, чем слова.

Создаваемые математиком образы, подобно образам художника или поэта, должны обладать красотой; подобно краскам или словам, идеи должны сочетаться гармонически. Красота служит первым критерием: в мире нет места безобразной математике. В этой связи я не могу не упомянуть одно всё ещё широко распространенное заблуждение (хотя, возможно, что ныне оно распространено далеко не так широко, как двадцать лет назад). Я имею в виду то, что Уайтхед назвал 'литературным предрассудком': любовь к математике и эстетическая оценка её есть 'мономания, охватывающая в каждом поколении лишь несколько эксцентриков'.

Трудно было бы в наше время найти образованного человека, совершенно нечувствительного к эстетической привлекательности математики. Возможно, определить математическую красоту очень трудно, но то же самое можно сказать и о красоте любого рода: мы не знаем с абсолютной точностью, что подразумеваем под красивой поэмой, но это не мешает нам распознать её при чтении. Даже профессор Хогбен, который любой ценой стремится минимизировать значимость эстетического элемента в математике, не отваживается отрицать его реальность. 'Разумеется, найдутся индивиды, для которых математика обладает холодной отстраненной привлекательностью... Эстетическая привлекательность математики для немногих избранных может быть вполне реальной'. Но он предполагает, что их 'немного' и их чувства холодны (это действительно очень смешные люди, которые живут в дурацких маленьких университетских городках, за стенами которых они укрываются от свежих ветров, дующих на широких открытых пространствах). В этом профессор Хогбен лишь вторит 'литературному предрассудку' Уайтхеда.

А факт состоит в том, что существует мало предметов, более 'популярных', чем математика. Большинство людей способны получать удовольствие от математики так же, как большинство людей обладают способностью наслаждаться приятной мелодией. И наверно, большинство людей в действительности больше интересуются математикой, чем музыкой. На первый взгляд картина может показаться иной, но этому легко найти объяснения. Музыку можно использовать для того, чтобы стимулировать массовые эмоции, - математика для этого не подходит; отсутствие музыкальных способностей воспринимается (вне всякого сомнения правильно) как нечто умеренно порочащее данное лицо, в то время как большинство людей настолько боятся самого названия математики, что они готовы совершенно искренне преувеличивать свою неспособность к математике.

Не требуется глубоких размышлений, чтобы понять абсурдность 'литературного предрассудка'. В любой цивилизованной стране имеется огромная масса любителей шахмат - в России в шахматы играет почти всё образованное население; и почти каждый любитель шахмат может распознать и оценить 'красивую' шахматную партию или задачу. Однако шахматная задача - это просто упражнение по чистой математике (шахматная партия - не вполне, так как психология также играет роль), и каждый, кто называет шахматную задачу 'красивой', аплодирует математической красоте, даже если речь идёт о красоте сравнительно низкого рода. Шахматные задачи - это хвалебные песнопения в честь математики.

Тот же урок на более низком уровне, но для более широкой публики мы можем извлечь из игры в бридж или, если спуститься ещё ниже, из тех колонок массовых газет, в которых публикуются головоломки. Почти вся необычная популярность этих игр и развлечений - дань притягательной силе рудиментарной математики, и лучшие составители головоломок, такие, как Дьюдени или 'Калибан', практически не используют ничего, кроме самой элементарной математики. Они знают своё дело: всё, что нужно широкой публике, это небольшая интеллектуальная 'встряска', а ничто не может сравниться с той встряской, которую даёт интеллекту математика.

Я мог бы добавить, что ничто в мире не доставляет большего удовольствия даже весьма известным людям (в том числе и тем из них, кто позволял себе пренебрежительные высказывания о математике), чем открытие или переоткрытие настоящей математической теоремы. Герберт Спенсер[115] опубликовал в своей автобиографии переоткрытую им теорему об окружностях, которую он доказал, когда ему было двадцать лет (не зная, что она была доказана Платоном более чем двумя тысячами лет раньше). Более свежий и более поразительный пример - профессор Содди (но его теорема действительно принадлежит ему).

11

Шахматная задача - настоящая математика, но в каком-то смысле это 'тривиальная' математика. Сколь бы изысканными и тонкими, оригинальными и удивительными ни были ходы, нечто существенное всё же отсутствует. Шахматные задачи неважные. Лучшая математика серьёзна и красива - если угодно, 'важна', но это слово многозначно, и слово 'серьёзна' лучше выражает то, что я хочу сказать.

Я не имею в виду 'практические' следствия математики. К этому вопросу мне ещё придётся вернуться в дальнейшем, а пока скажу лишь, что если шахматная задача, грубо говоря, 'бесполезна', то о лучшей математике большей частью можно сказать то же самое, и лишь очень малая толика математики практически полезна, и что эта малая часть математики сравнительно неинтересна. 'Серьёзность' математической теоремы кроется не в практических следствиях из неё, (обычно они ничтожны), а в значимости математических идей, между которыми теорема устанавливает взаимосвязь. Не вдаваясь в детали, можно сказать, что математическая идея 'значительна', если её можно естественно и просто связать с широким комплексом других математических идей. Таким образом, серьёзная математическая теорема, теорема, которая связывает значительные идеи, весьма вероятно приводит к существенным продвижениям в самой математике и даже в других науках. Ни одна шахматная задача не оказала влияния на общее развитие научной мысли; Пифагор[116], Ньютон, Эйнштейн,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату