самоорганизации должен относиться именно к сфере физики. То, что мы увидели в своих экспериментах, являлось двумя сторонами одной медали. Порядок существовал — такой порядок, в который постепенно вклинивалась доля случайности, еще шаг — и появлялся хаос, скрывающий в себе свой особый порядок».
Шоу и его коллегам пришлось претворить переполнявший их энтузиазм в трезвую научную программу. Они задавали вопросы, на которые можно было ответить и стоило отвечать. Они искали связующие звенья между теорией и опытом. Именно там, как подсказывала интуиция, лежал пробел, который требовалось заполнить. Приступая к работе, молодые ученые должны были выяснить, что уже известно, а что еще ждет своего часа. Одно это представлялось тяжким испытанием.
Группе динамических систем мешало то, что общение ученых ограничено рамками отдельных дисциплин. Эта обособленность была особенно досадной помехой, когда предмет исследования лежал на границе целого ряда областей знания. Зачастую исследователи даже не представляли, где именно находятся — в уже освоенных владениях науки или на неизведанной территории. Единственным, кто мог пролить свет на это обстоятельство, был Джозеф Форд, страстный ревнитель хаоса из Технологического института Джорджии. Он уже бесповоротно решил, что будущее физики — за нелинейной динамикой, и только за ней, и занялся сбором и распространением сведений о журнальных публикациях по хаосу. Сам он занимался недиссипативным хаосом, хаосом астрономических объектов и физики частиц. Форд, как никто другой, был в курсе исследований советских ученых и считал своим долгом поддерживать контакты со всеми, кто хотя бы отдаленно разделял философию новоиспеченной дисциплины. Везде и всюду он обзаводился друзьями, и краткий пересказ статьи любого исследователя проблемы нелинейности немедленно пополнял растущее собрание рефератов Форда. Молодые ученые из Санта-Круса, узнав о начинании Форда, обратились к нему с просьбой выслать копии статей, и вскоре публикации потекли рекой.
Члены группы выяснили, что странные аттракторы возбуждают множество вопросов. Каковы их характерные формы? Что представляет собой их топологическая структура? Что говорит геометрия о физике родственных динамических систем? Первым подходом к проблеме явилось практическое исследование, с которого и начал Шоу. Многие математические статьи были посвящены аспекту структуры, но подход математиков казался Шоу слишком детализированным: за деревьями еще не видно было леса. Изучение литературы привело его к мысли, что математики, отвергнув в силу предубеждения компьютерный эксперимент, запутались в сложностях структуры аттракторов и отдельных орбит, бесконечности, возникавшей здесь, и отсутствии регулярной последовательности, проявлявшейся там. Их не интересовала неопределенность аналоговых процессов, которая, с точки зрения физика, правила реальным миром и всеми его системами. Сам Шоу, будучи физиком, увидел на экране своего осциллографа не отдельные орбиты, а некую огибающую кривую, элементами которой они являлись. Эта кривая менялась по мере того, как он нажимал на кнопки. Он не мог дать точное объяснение наблюдаемым изгибам и поворотам на языке математической топологии, и все же ему начинало казаться, что он понимает их.
Физик стремится делать измерения. Но что можно измерить в неуловимых движущихся образах? Члены группы попытались отделить те особые свойства, которые делали странные аттракторы столь чарующими. Сильная зависимость от начальных условий — стремление близлежащих траекторий отдалиться друг от друга… Именно эта характеристика заставила Лоренца понять, что долгосрочное предсказание погоды невозможно. Но где взять инструменты, чтобы определить степень зависимости? Да и поддается ли измерению непредсказуемость?
Ответ на этот вопрос дала концепция, родившаяся в России, а именно — показатели Ляпунова. Эти величины выражали меру как раз тех топологических характеристик, которые соответствовали понятию непредсказуемости. Показатели Ляпунова давали возможность в рамках некоторой системы оценить противоречивые результаты сжатия, растяжения и свертывания в фазовом пространстве аттрактора, позволяя тем самым судить обо всех свойствах системы, которые ведут к стабильности или неупорядоченности. Если значение показателя оказывалось больше нуля, это свидетельствовало об удлинении, при котором близлежащие точки разделялись. Значение меньше нуля указывало на сокращение. Для аттрактора, представлявшего собой неподвижную точку, все экспоненты Ляпунова являлись отрицательными, поскольку растяжение было направлено внутрь, к конечному устойчивому состоянию. Аттрактор в форме периодической орбиты характеризовался лишь одним нулевым значением, все другие значения были отрицательными. Странный аттрактор, как выяснилось, должен был обладать по крайней мере одним положительным значением показателя Ляпунова.
К досаде молодых ученых, оказалось, что они не создали ничего нового, а всего лишь развили готовую идею настолько, насколько было возможно с точки зрения практики, научившись измерять показатели Ляпунова и соотносить их с другими важными характеристиками. Используя компьютерную анимацию, они строили серии движущихся картин, иллюстрировавших биения порядка и хаоса в динамических системах. Проделанный ими анализ ясно показывал, каким образом системы, будучи неупорядоченными в одном направлении, могут оставаться вполне определенными и устойчивыми в другом. Один из таких своеобразных фильмов демонстрировал, что происходит с крошечным кластером соседствующих точек на странном аттракторе — олицетворением начальных условий — по мере развития системы во времени. Кластер начинал «распыляться», теряя фокус, превращался в точку, затем — в маленький шарик, который у некоторых типов аттракторов быстро распылялся. Такие аттракторы представляли интерес при изучении
Исследования хаоса, проведенные в Санта-Крусе, наиболее существенно затронули тот раздел математики, в котором присутствует изрядная доля философии и который называется теорией информации. Эта теория была создана в конце 40-х годов Клодом Шенноном, американским инженером, трудившимся в лабораториях компании «Белл телефон». Он назвал свою работу «Математическая теория коммуникации», но поскольку речь в этом труде шла об особом предмете, называемом информацией, за новой дисциплиной закрепилось наименование «теория информации». То был продукт века электроники. Линии связи и радиопередачи несли в себе нечто определенное, в недалеком будущем компьютерам предстояло хранить это «нечто» на перфокартах, магнитных цилиндрах и в оперативной памяти, и все же оно не являлось знаниями и само по себе не обладало смыслом. Основными единицами этого загадочного предмета являлись не идеи, не понятия и даже не всегда слова или числа. Независимо от того, нес ли он в себе смысл или бессмыслицу, инженеры и математики могли его измерять, пересылать по линиям передач и проверять такие передачи на точность. Слово «информация» было таким же словом, как и все остальные, но люди должны были запомнить, что они используют специальный термин, не освященный фактическим доказательством, учением, мудростью, пониманием и просвещением.
Технические средства ввели в рамки предмет изучения теории. Поскольку информация хранилась в ячейках компьютерной памяти в двоичном представлении, один разряд такой ячейки, содержащий единицу или ноль (что соответствует понятиям «да» и «нет») и названный битом, стал основной мерой информации. С технической точки зрения теория информации превратилась в инструмент, который помогал выяснить, каким образом шумы в форме случайных помех препятствуют плавному потоку битов при передаче. Теория подсказывала способ определения необходимой пропускной способности коммуникационных каналов, компакт-дисков или прочих продуктов технологии, кодировавшей язык, звуки и зрительные образы. Она указывала пути исчисления эффективности различных схем коррекции ошибок, в частности применения некоторых битов для проверки остальных. Наконец, она исследовала такое важнейшее понятие, как «избыточность». Согласно теории информации Шеннона обычный язык более чем на 50 % избыточен, т. е. содержит звуки или буквы, которые не являются строго необходимыми для передачи сообщения. Знакомая идея, не правда ли? Надежность связи в мире, где невнятно проговаривают слова и допускают опечатки, существенным образом зависит от избыточности. Известная всем реклама