стороны к признаваемым за бесконечные моментам применяется прием, правомерный лишь относительно конечных величин, при котором мы не имеем права ничем пренебрегать по причине незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.
Здесь нужно указать на замечательный прием Ньютона (Prin. math. phil. nat. lib. II lemma II после propos VII); он изобрел остроумный фокус (Kunststuck) для устранения арифметически неправильного пренебрежения произведениями бесконечно малых разностей и высшими их порядками при нахождении дифференциалов. Он находит дифференциал произведения — из которого легко потом вывести дифференциалы частного, степени и т. п. — следующим путем. Произведение х и у, если уменьшить каждый множитель наполовину его бесконечно малой разности, есть ху — xdy/2– ydx/2+dxdy/4, если же увеличить его настолько же, то произведение будет ху +xdy/2+ydx/2+dxdy/4. Если от этого произведения отнять первое, то получится разность ydx +xdy, которая есть приращение на целые dx и dy, так как на эту величину различаются оба произведения; следовательно это дифференциал ху. Как видно, при этом сам собою отпадает член, представлявший главное затруднение, произведение обеих бесконечно малых разностей dxdy. Но несмотря на имя Ньютона, следует сказать, что это, хотя и весьма элементарное, действие неверно.
Неверно, будто (x+dx/2) (у+dy/2) — (х — dx/2) (у — dy/2) = (х+dx) (y+dy) — ху[24]. Лишь потребность, при важности исчисления флюксий, {176} обосновать его могла побудить такого математика, как Ньютон, впасть в заблуждение подобного доказательства.
Другие формулы, с которым прибегает Ньютон для вывода дифференциала, связаны c конкретными относящимися к движению значениями элементов и их степеней. При употреблении формы ряда, которая вообще характерна для его метода, он близок к тому, чтобы сказать, что всегда в его власти путем прибавления дальнейших членов достигнуть потребной степени точности, вообще что результат есть некоторое приближение; он и здесь как бы довольствуется тем же основанием, к которому прибегает его метод решения уравнений высших степеней, при коем путем приближения высшие степени, возникающие через подстановку в данное уравнение каждого найденного еще неточного значения, отбрасываются по грубому основанию их малости; см. Lagrange Equations numeriques p. 125.
Ошибка, в которую впал Ньютон в деле разрешения задачи путем пренебрежения существенными для нее высшими степенями, которая дала его противникам повод торжествовать триумф своего метода над его методом, и истинный источник которой обнаружил Лагранж в своих новейших исследованиях (Theorie des fonct. analyt L. P. 3 Ch. 14), доказывает, что формализм и неточность еще господствуют в деле употребления этого орудия. Лагранж показывает, что Ньютон потому впал в ошибку, что он пренебрегал членом ряда, содержащим именно ту степень, которая имела значение для данной задачи. Ньютон держался за формальный, поверхностный принцип пренебрежения членами в виду их относительной малости. Известно, что в механике членам ряда, в котором развивается функция движения, придается определенное значение, так что первый член или первая функция относится к моменту скорости, вторая — к силе ускорения, а третья — к сопротивлению сил. Поэтому члены ряда должны быть рассматриваемы тут не только, как части некоторой суммы, но как качественные моменты целостного понятия. Тем самым пренебрежение прочими членами, принадлежащими ложно бесконечному ряду, имеет смысл, совершенно различный от пренебрежения ими на основании относительной малости[25]. Ньютоново разрешение задачи ошибочно не потому, что в нем не принимаются во внимание члены ряда, лишь как части некоторой суммы, но потому, что не принимается во внимание член, содержащий именно то качественное определение, которое в данном случае важно.{177}
В этом примере качественный смысл есть то, от чего зависит прием. В связи с тем можно тотчас же установить общее утверждение, что все затруднение принципа было бы устранено, если бы формализм определения дифференциала в дающей ему имя задаче, был заменен различением некоторой функции от ее изменения при приращении переменной величины, если бы было выяснено качественное значение принципа, и действия были бы поставлены от того в зависимость. При этом условии дифференциал хn вполне исчерпывается первым членом ряда, получающегося через развитие (x+dx) n. Что прочие члены при этом не принимаются во внимание, зависит, стало быть, не от их относительной малости; тут не предполагается неточности, ошибки или заблуждения, которые могли бы быть исправлены или улучшены другим заблуждением. Таков взгляд, коим Kapно преимущественно оправдывает обычный метод исчисления бесконечных. Так как здесь дело идет не о сумме, а об отношении, то дифференциал оказывается вполне найденным посредством первого члена; а там, где есть нужда в дальнейших членах, в дифференциалах высших порядков, то их нахождение состоит не в продолжении ряда, как суммы, но в повторении того же самого отношения, которое одно есть искомое, и которое найдено вполне уже в первом члене. Потребность суммирования формы их ряда и то, что с ним связано, должны таким образом быть совершенно отделены от этого интереса отношения.
Объяснения, которые Карно дает методу бесконечных величин, являются наиболее очищенным и ясно изложенным из всего, что содержится в вышеупомянутых представлениях. Но при переходе к самым действиям и у него выступают более или менее обычные представления о бесконечной ма{178}лости опускаемых членов сравнительно с другими. Он оправдывает метод более фактом правильности его результатов и пользою, приносимою для упрощения и сокращения вычисления употреблением, как он их называет, несовершенных уравнений, т. е. таких, в которых допущено такое арифметически неверное опущение, чем природою самого дела.
Лагранж, как известно, вновь прибег к первоначальному методу Ньютона, методу рядов, для того, чтобы преодолеть трудности, связанные как с представлением бесконечно малых, так и с методами первых и последних отношений и пределов. Достаточно привести из его учения о функциях, преимущества которого в отношении точности, отвлеченности и всеобщности признаны, впрочем, в достаточной мере, что оно покоится на том основоположении, что разность, не становясь нулем, может быть принята столь малою, чтобы каждый член был более суммы всех остальных членов. При этом методе также начинают с категорий приращения и разности функции, переменная величина которой содержит приращение первоначальной функции, с которым является докучный ряд; равно как в дальнейшем отбрасываемые члены ряда принимаются в соображение, лишь как сумма, и основание, почему они отбрасываются, полагается в относительности их определенного количества. Отбрасывание, стало быть, и здесь