определяется вообще не тою точкою зрения, которая отчасти имеет место при некоторых приложениях, при которых, как упомянуто выше, члены ряда должны иметь определенное качественное значение и оставляются без внимания не потому, что они незначительны по величине, но потому, что они незначительны по качеству; отчасти же отбрасывание зависит от той существенной точки зрения, которая определенно выступает относительно так называемых дифференциальных коэффициентов лишь в так называемом приложении дифференциального исчисления у Лагранжа, о чем еще будет говориться подробнее в следующем примечании.

Качественный характер вообще оказывается свойствен рассматриваемой здесь форме величины, которая называется бесконечно малым, что обнаруживается всего непосредственнее в вышеприведенной категории предела отношения; это ее проведение в исчислении образует своеобразный метод. Из того, что говорит Лагранж по поводу этого метода, именно что ему недостает легкости приложения, и что выражение предел не вызывает определенной идеи, мы остановимся на втором и рассмотрим ближе его аналитическое значение. В представлении предела именно и заключается вышеуказанная истинная категория качественного определения отношения между переменными величинами, ибо входящие в него формы их, dx и dy, должны быть взяты просто лишь как моменты dy/dx, и самое dy/dx должно считаться единым нераздельным означением. Здесь нужно оставить в стороне то обстоятельство, что тем самым механизм исчисления особенно в его приложении утрачивает преимущество, извлекаемое им из того, что члены дифференциального коэффициента отделяются один от другого. Этот предел {179}должен быть пределом данной функции; он должен иметь известное значение в связи с нею, определяемое способом вывода. С простою категориею предела мы не подвинулись бы далее, чем с тем, с чем мы имеем дело в этом примечании, именно показали бы только, что бесконечно малое, изображаемое в дифференциальном исчислении, как dx и dy, имеет не только отрицательный, пустой смысл некоторой не конечной, не данной величины, как например, когда говорится «бесконечное множество», «и т. д. до бесконечности» и т. п., но определенный смысл качественной определенности количественного, моментов отношения, как таковых. Эта категория в таком виде не имеет еще никакого отношения к тому, что есть некоторая данная функция, не помогает еще сама по себе ее разработке и не приводит к употреблению, которое должно бы иметь место при таком определении; таким образом представление предела, ограниченное такою указанною ему определенностью, не приводило бы ни к чему. Но выражение «предел» содержит уже в себе самом указание на то, что он есть предел нечто, т. е. имеет известное значение, определяемое функциею переменных величин; и должно рассмотреть, к чему приводит этот его конкретный смысл. Он должен быть пределом отношения двух приращений, на которые признаются увеличивающимися две переменные величины, соединенные в одном уравнении, из коих одна считается функциею другой; приращение принимается здесь неопределенно и вообще, и поэтому о бесконечно малом нет еще и речи. Но ближайшим образом путь к нахождению этого предела приводит к таким же непоследовательностям, какие свойственны и другим методам. А именно этот путь таков. Если fx=y, то, при переходе у в у+k, fx переходит в fx +ph+gh2 +rh3 и т. д., следовательно k=ph+gh2 +rh3 и т. д. а k/h=p +gh+rh2 и т. д. Если теперь k и h исчезают, то исчезают все члены ряда, кроме p, который и оказывается пределом отношения обоих приращений. Отсюда видно, что хотя h и k, как определенные количества, полагаются =0, но что оттого k/h еще не обращается в 0/0, но остается некоторым отношением. Но представление предела должно обладать тем преимуществом, что оно устраняет заключающуюся тут непоследовательность; р должно быть не тем действительным отношением, которое превратилось в 0/0, но иметь лишь определенное значение, к которому отношение может приближаться бесконечно, т. е. так, чтобы разность могла стать менее всякой данной разности. Более определенный смысл приближения в отношении к тому, что собственно должно между собою сближаться, будет рассмотрен ниже. Но что количественное различие, определяемое не только, как могущее, но как долженствующее быть менее всякой данной величины, не есть уже количественное различие, это ясно само по себе и настолько очевидно, насколько может быть что-нибудь очевидно в математике; тем самым, {180}однако, мы не подвигаемся далее dy/dx=0/0. Если же, напротив, dy/dx принимается за р, т. е. за определенное количественное отношение, как это и есть в действительности, то, наоборот, является затруднение в предположении h=0, в предположении, путем которого единственно и получается k/h=p. Если же допустить, что k/h=0, причем, однако, вместе с h=0 и самое k=0 (так как приращение k имеет место лишь при условии существования h), то является вопрос, куда же девается р, которое имеет совершенно определенное количественное значение. На это нам тотчас же дается простой и сухой ответ, что р есть коэффициент, возникающий путем такого-то вывода — известным определенным образом полученная первая производная функция первоначальной функции. Если удовольствоваться этим ответом, как по существу дела довольствуется им Лагранж, то общая часть науки дифференциального исчисления и непосредственно самая та форма, которая именуется теориею пределов, окажется освобожденною от приращений, от их бесконечной или любой малости, от затруднения, состоящего в том, что кроме первого члена или, правильнее, лишь коэффициента первого члена устраняются дальнейшие члены ряда, кроме тех, которые неустранимы при употреблении данных приращений; кроме того, она очищается и от другого, связанного с этим, от формальных категорий прежде всего бесконечного, далее бесконечного приближения и других столь же пустых категорий непрерывных величин[26] и всего того, что считается нужным ввести, как стремление, становление, повод к изменению. Но в таком случае нужно бы было показать, какое еще значение и ценность, т. е. какую связь и какое употребление для дальнейшей математической потребности, имеет р, независимо от того совершенно достаточного для теории сухого определения, что оно есть не что иное, как полученная путем развития бинома производная {181}функция; об этом будет сказано во втором примечании. Здесь же следует ближайшим образом разобраться в той запутанности, которая вносится через вышеуказанное столь часто встречающееся в изложениях употребление представления приближения в понимание собственной качественной определенности отношения.

Было указано, что так называемые бесконечно малые разности выражают собою исчезание членов отношения, как количеств, и что то, что остается за сим, есть их количественное отношение лишь постольку, поскольку оно определено качественно; качественное отношение при этом в такой мере сохраняется, что оно оказывается именно тем, что возникает через переход конечных величин в бесконечные. В этом состоит, как мы видели, вся суть дела. Так, напр., в последнем отношении, исчезают, как количества, абсцисса и ордината; но члены этого отношения

Вы читаете Учение о бытии
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату