х):у, что впоследствии и было обозначено, как отношение dx/dy. Это уравнение есть уравнение кривой, а это отношение, вполне зависимое от уравнения и выведенное из последнего (как указано выше, по простому правилу), есть, напротив, линейное, равное отношению между линиями; р:2у или (а — х):у суть сами отношения прямых линий кривой, координат и параметра; но тем самым знание еще не подвигается вперед. Интерес состоит в том, чтобы узнать и о других связанных с кривою линиях, что им свойственно это отношение, найти равенство двух отношений. Поэтому, во- вторых, является вопрос, какие прямые линии, определенные свойствами кривой, находятся в таком отношении. Но это есть то, что было узнано уже ранее, а именно, что такое этим путем полученное отношение есть отношение ординаты к подкасательной. Старые математики нашли это остроумным геометрическим способом; то, что было открыто новыми исследователями, есть эмпирический прием, состоящий в выводе такого уравнения прямой, из которого было бы видно то первое отношение, о коем уже известно, что оно равно отношению, содержащему линии, в данном случае, подкасательные, подлежащие определению. Этот вывод уравнения понимался и исполнялся отчасти методически, путем дифференцирования, отчасти же были изобретены воображаемые приращения координат и воображаемый образованный из них и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного через понижение сте{195} пени уравнения, с отношением ординаты и подкасательной, оказалась полученною не эмпирически, как уже давно знакомая, но путем доказательства. Однако, старое знакомство проявляется вообще и, несомненно, в том, что вышеуказанная форма правила оказывается единственным поводом и относительным оправданием к принятию характеристического треугольника и упомянутой пропорциональности.

Лагранж отбросил эту симуляцию и вступил на истинно научный путь; его метод привел к правильному взгляду, так как этот метод состоит в том, чтобы разделить оба перехода, потребные для решения задачи, и каждый из них разработать и доказать для себя. Одна часть этого решения — остающаяся ближайшим образом при примере элементарной задачи нахождения подкасательной — теоретическая или общая часть, именно нахождение первой функции из данного уравнения кривой, регулируется сама для себя; она дает линейное отношение, т. е. отношение прямых линий, входящих в систему определения кривой. Другая часть решения есть нахождение тех связанных с кривою линий, которые состоят в таком отношении. Это достигается прямым путем (Theorie des fonct. anal. p. II chap. II), т. е. без характеристического треугольника, без того, чтобы прибегать к бесконечно малым дугам, ординатам и абсциссам и давать им определения dy и dx, т. е. членов этого отношения, и вместе с тем без того, чтобы непосредственно установлять их равенство с ординатою и подкасательною. Таково, говоря мимоходом, основное положение аналитической геометрии, которое исходит от координат или, чтo то же самое, механики — от параллелограмма сил, и именно потому не испытывает потребности задавать себе труд доказательства. Подкасательная полагается стороною треугольника, другие стороны которого суть ордината и соответствующая ей касательная. Последняя, как прямая линия, имеет своим уравнением р=aq (прибавление +b бесполезно для определения и обусловливается лишь любовью к обобщению); определение отношения p/q есть а, коэффициент q, который есть относительно первая функция уравнения, вообще же должно быть рассматриваемо, лишь как а=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к кривой. Поскольку затем берется первая функция уравнения кривой, она (функция) есть также определение некоторой прямой линии; поскольку далее одна координата р первой прямой линии и у, ордината кривой, отожествляются, т. е. точка, в которой она, принимаемая за касательную, прикасается к кривой, есть равным образом исходная точка прямой, определяемой первою функциею кривой, то вопрос сводится к доказательству, что эта вторая прямая линия совпадает с первою, т. е. есть касательная; или выражаясь алгебраически, что если y=fx, a p=Fq и если у=р, т. е. fx=Fx, то f'x=F'q. A что принимаемая за касательную прямая и та прямая, которая определяется из уравнения его первою функциею, совпадают, что вторая прямая есть также {196}касательная, — это показывается при помощи приращения i абсциссы и определяемого через развитие функции приращения ординаты. Здесь, следовательно, опять-таки выступает пресловутое приращение; но так как оно вводится для только что объясненной надобности, то и развитие функции при его помощи должно, конечно, считаться чем-то другим сравнительно с ранее упомянутым употреблением приращения для нахождения дифференциального уравнения и для характеристического треугольника. Допускаемое здесь употребление правомерно и необходимо; оно входит в круг геометрии, так как оно служит для геометрического определения касательной, как таковой, которое не может между касательною и кривою, с коею первая имеет общую точку, найти никакой прямой линии, также проходящей через эту точку. Ибо этим определением качество касательной и не-касательной сводится к различению величины, и касательною оказывается та линия, на которую с точки зрения лишь определения приходится наименьшая величина (die grossere Kleinheit). Эта по-видимому лишь относительно наименьшая величина не содержит в себе ничего эмпирического, т. е. зависящего от определенного количества, как такового, она положена качественно самым свойством формулы, если только различие момента, от которого зависит сравниваемая величина, есть различие степени; если последняя объемлет i и i2, и если i, долженствующее в конце концов означать число, изображается дробью, то i2 в себе и для себя менее, чем i, так что даже представление любой величины, которую можно приписать i, здесь излишне и даже неуместно. Поэтому и доказательство наименьшей величины не имеет ничего общего с бесконечно малым, которое тем самым здесь совершенно не выступает, Просто ради его красоты и ради ныне забываемой, но вполне заслуженной славы, я хочу здесь сказать о декартовом методе касательных; он имеет впрочем отношение к природе уравнений, о которых нужно сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором искомое линейное определение также находится путем той же производной функции, в своей и в других отношениях оказавшейся столь плодотворною геометрии (liv. II. 357 и сл. Oeuvres compl. ed. Cousin t. V), в которой он научил великим основоположениям касательно природы уравнений и их геометрического построения, а с тем вместе и приложению анализа к геометрии. Проблема имеет у него форму задачи — провести прямые линии перпендикулярно к любому месту кривой, чем определяются подкасательные и т. п.; понятно то удовлетворение, которое он выражает по поводу своего открытия, касавшегося предмета господствовавшего в то время общего научного интереса, открытия, которое столь геометрично и тем самым столь возвышается над вышеупомянутыми методами простых правил его соперников: «я осмеливаюсь сказать, что эта самая полезная и самая общая из геометрических задач, не только из тех, которые я знаю, но даже из тех, которые я когда-либо желал знать в геометрии». Он основывает решение ее на аналитических уравнениях прямоугольного треугольника, образуемого ординатою точки кривой, в которой должна быть {197}перпендикулярно проведена требуемая прямая линия, затем самою этою линиею, нормальною, и, в третьих, частью оси, отрезаемой ординатою и нормальною, поднормальною. Из известного уравнения кривой подставляется за сим в уравнение треугольника значение или ординаты или абсциссы так, что получается уравнение второй степени (причем Декарт показывает, как к тому же можно свести и кривые, уравнения коих содержат высшие степени), в котором дана лишь одна из переменных величин и притом в квадрате и в первой степени; квадратное уравнение, которое прежде всего

Вы читаете Учение о бытии
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату