1. Третья ступень этого направляющегося к определениям понятия познания есть переход от частности к единичности; эта ступень составляет содержание теоремы. Следовательно то, что здесь подлежит рассмотрению, есть относящаяся к себе определенность, различение предмета в себе самом и взаимное отношение различенных определенностей. Определение содержит в себе лишь одну определенность, разделение – определенность против другой; в переходе к единичности предмет вошел в отношение извне внутрь себя самого. Между тем как определение останавливается на общем понятии, в теоремах предмет познается напротив в своей реальности в условиях и формах своего реального существования. По{184}этому он вместе с определением изображает собою идею, которая есть единство понятия и реальности. Но рассматриваемое здесь, еще погруженное в искание познание не доходит до этого изображения постольку, поскольку реальность при нем не проистекает из понятия, и стало быть ее зависимость от последнего и вместе с тем самое их единство еще не познается.
По только что приведенному определению теорема есть в собственном смысле слова синтетическое в предмете, поскольку отношение ее определенности необходимо, т.е. обосновано на внутреннем тожестве понятия. Синтетическое в определении и разделении есть некоторая внешним образом принимаемая связь; то, что найдено, приводится в форму понятия, но, как найденное, все содержание только показывается; теорема же должна быть доказана. Так как это познание не выводит содержания своего определения и основания разделения, то, казалось бы, что оно может обойтись и без доказательства тех отношений, которые выражаются теоремою, и в этом смысле также довольствоваться восприятием. Но то, что отличает познание от простого восприятия и представления, есть форма понятия вообще, сообщаемая им содержанию; это достигается определением и разделением; но так как содержание теоремы проистекает из момента понятия единичности, то оно состоит в определениях реальности, отношения которых уже не принадлежат простым и непосредственным определениям понятия; в единичности понятие перешло в инобытие, в реальность, в силу чего стало идеею. Синтез, заключающийся в теореме, тем самым уже не оправдывается формою понятия; он есть связывание различных; еще не положенное при этом единство должно быть еще указано, и потому доказательство необходимо тут для самого сказанного познания.
Ближайшим образом при этом возникает затруднение определенно различить, какие из определений предмета должны быть приняты в определения, и какие отнесены в теорему. Здесь не может быть установлено никакого принципа; он кажется заключающимся лишь в том, что то, что непосредственно присуще некоторому предмету, входит в состав определения; для прочего же, как опосредованного, должно быть сначала найдено опосредование. Но содержание определения есть вообще определенное и тем самым само по существу опосредованное; содержание имеет лишь некоторую субъективную непосредственность, т.е. субъект совершает произвольное начало и сообщает предмету значение предположения. А поскольку предмет конкретен внутри себя и должен быть также разделен, то получается множество определений, по своей природе опосредованных и признаваемых за непосредственные и недоказываемые не по принципу, а лишь по субъективному решению. И у Евклида, который искони справедливо признан мастером в этом синтетическом виде познания, под названием аксиомы встречается некоторое предположение о параллельных линиях, которое считалось требующим доказательства, и недостаточность которого пробовали различными способами восполнять. Во многих других теоремах думали находить предположения, которые должны быть не признаваемыми непосредственно, а доказы{185}ваемыми. Что касается той аксиомы о параллельных линиях, то по этому поводу можно заметить, что именно тут Евклид обнаруживает правильное понимание дела, точно оценив и элемент и природу своей науки; доказательство этой аксиомы должно бы было быть ведено из понятия параллельных линий; но такое доказательство столь же мало относится на долю своей науки, как и вывод ее определений, аксиом и вообще ее предмета, самого пространства и его ближайших определений, измерений; ибо такой вывод может быть сделан только из понятия; а так как последнее лежит вне своеобразия евклидовой науки, то это для нее есть необходимо предположение, т.е. относительно первое.
Аксиомы, – чтобы упомянуть о них по этому поводу, – принадлежат к тому же классу. Неправильно считают их обычно за абсолютно первое, не требующее в себе и для себя никакого доказательства. Если бы так было в действительности, то они были бы просто тожесловиями, так как лишь в отвлеченном тожестве нет никакого различия, стало быть для него не требуется никакого опосредования. Если же аксиомы суть нечто большее, чем тожесловия, то они суть предложения из какой-либо другой науки, так как для той науки, которой они служат аксиомами, они должны быть предположениями. Поэтому они суть собственно теоремы и притом по большей части относящиеся к логике. Аксиомы геометрии суть также леммы, логические предложения, которые впрочем потому приближаются к тожесловиям, что они касаются лишь величин, и поэтому качественные различения в них упразднены; о главной аксиоме, о чисто количественном умозаключении, была речь уже выше. Поэтому аксиомы так же, как определения и разделения, рассматриваемые в себе и для себя, требуют некоторого доказательства и лишь потому не превращаются в теоремы, что, как относительно первые, для известной точки зрения признаются предположениями.
По поводу содержания теорем следует сделать то ближайшее различение, что так как оно состоит в некотором отношении определенностей реальности понятия, то эти отношения могут быть как более или менее неполными и единичными отношениями предмета, так и таким отношением, которое охватывает все содержание реальности и выражает собою его определенное отношение. Но единство полных определенностей содержания тожественно понятию; содержащее его предложение есть само поэтому опять-таки определение, которое однако выражает собою не только непосредственно усвоенное, но и развитое в его определенных, реальных различениях понятие или полное существование последнего. То и другое вместе представляет собою идею.
При ближайшем сравнении теорем какой-либо синтетической науки, и именно геометрии, получается то различение, что некоторые из ее теорем содержат в себе лишь единичные отношения предмета; другие же – такие отношения, в коих выражается полная определенность предмета. Очень поверхностен тот взгляд, по которому все эти предложения считаются равноценными на том основании, что каждое вообще содержит в себе некоторую {186}истину и в формальном ходе изложения, в связи доказательства, равно существенно. Различение содержания теорем само теснейшим образом связано с этим ходом; некоторые дальнейшие замечания о них послужат к тому, чтобы ближе осветить как это различение, так и природу синтетического познания. Прежде всего уже искони прославляется порядок расположения теорем в евклидовой геометрии, которая должна служить представительницею синтетического метода, представляющая самый совершенный его образец; в ней каждой теореме всегда предпосылаются, как ранее доказанные, те предложения, которые требуются для построения и доказательства этой теоремы. Но это обстоятельство касается формальной последовательности; как ни важна последняя, оно все же касается более внешнего расположения и сама по себе не имеет отношения к существенному различению понятия и идеи, в коем заключается более высокий принцип необходимого движения вперед. А именно определения, с которых начинают, берут чувственный предмет, как непосредственно данный, и определяют его по его ближайшему роду и видовой особенности, которые также суть простые непосредственные определенности понятия, общность и частность, отношение коих далее не развивается. Теоремы, служащие началом, сами по себе и не могут опираться ни на что иное, кроме таких непосредственных данных, какие заключаются в определениях; равным образом их взаимная зависимость ближайшим образом может состоять лишь в том общем, что одна вообще определена другою. Таким образом первые предложения Евклида о треугольниках касаются лишь совпадения, т.е. вопроса о том,