оценки коэффициентов уравнения регрессии.
Для справки заметим, что
Несмотря на высказанные опасения, многие авторитетные специалисты полагают, что в случае больших выборок уравнения авторегрессии позволяют получать состоятельные и эффективные оценки. Вот как, например, оценивает авторегрессионные модели профессор статистики Стэнфордского университета Т. Андерсон: «Модель авторегрессии обладает рядом преимуществ по сравнению с моделью скользящего среднего и процессом авторегрессии с остатками в виде скользящего среднего, хотя последние в определенных случаях могут хорошо описывать образование наблюдаемых временных рядов. Оценки коэффициентов процесса авторегрессии легко вычисляются. Статистические процедуры для такого процесса, основывающиеся на теории больших выборок, легко выполнимы, поскольку они соответствуют обычной технике наименьших квадратов. Во многих случаях коэффициенты процесса авторегрессии допускают непосредственную интерпретацию, а линейные функции от запаздывающих переменных могут быть использованы для прогнозирования»[10].
Следует заметить, что в зависимости от того, сколько предыдущих значений временного ряда будет включено в уравнение авторегрессии в качестве лаговых (факторных) переменных, принято различать авторегрессионные процессы разного порядка. Так, в формуле (3.1) представлен авторегрессионный процесс 1-го порядка, который в англоязычной литературе обычно называется словосочетанием
Например, в том случае, когда в авторегрессию 1-го порядка добавляются лаговые переменные
где
3.2. Специфика уравнений авторегрессии со скользящим средним (ARMA)
Помимо авторегрессионных моделей нам необходимо также познакомиться и с моделями со скользящим средним в остатках, которые в англоязычной литературе обычно называются словосочетанием
Объединение в одной модели авторегрессионного процесса AR и модели со скользящим средним в остатках МА приводит к созданию более экономичной модели с точки зрения количества используемых параметров. Эту объединенную модель в англоязычной литературе кратко называют ARMA. Эта аббревиатура произошла от словосочетания
Порядок в этой модели в буквенной форме принято обозначать как ARMA(
Чтобы объединенная модель ARMA(2; 1) была более понятна, ее можно задать в виде двух уравнений. Так, для AR(2) формула будет иметь вид
в то время как уравнение для МА(1) можно представить в следующем виде:
Следовательно, формулу (3.4) модели ARMA(2; 1) можно получить путем вычитания из формулы (3.5) расчетного параметра
3.3. Коррелограмма и идентификация лаговых переменных в уравнениях AR и ARMA
При практическом построении модели ARMA(/?
Программа EViews позволяет довольно быстро найти оптимальные параметры
С этой целью загрузим в EViews ежемесячные данные по курсу доллара (столбец с данными обозначим как USDollar) в соответствии с алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews», изложенным в главе 1.
Далее строим коррелограмму, тем более что в EViews сделать это довольно просто. С этой целью в Workfile (рабочем файле) этой программы открываем файл USDollar. После чего в файле USDollar нам необходимо выбрать опции VIEW/CORRELOGRAM, а в появившемся окне (рис. 3.1) CORRELOGRAM SPECIFICATION (спецификация коррелограммы) оставить заданные по умолчанию опцию LEVEL (исходный уровень) и опцию LAGS ТО INCLUDE (максимальная величина лага, включенного в коррелограмму). В результате у нас получится коррелограмма исходных уровней (фактических значений курса доллара) временного ряда USDollar с величиной лага от 1 до 36.