Х2…., X1 носит функциональный характер. В том случае, когда R2 равен нулю, какая-либо связь между переменными в этом уравнении регрессии отсутствует.
Величина коэффициента детерминации R2 является одним из важнейших критериев при оценке качества уравнения регрессии. Так, при выборе из нескольких уравнений регрессии предпочтение (при прочих равных условиях) отдается тому, у которого коэффициент детерминации R2 ближе к единице. И это вполне понятно: чем выше коэффициент детерминации уравнения регрессии, тем выше у него уровень аппроксимации и соответственно ниже доля необъясненной дисперсии. В нашем случае коэффициент детерминации R2 = 0,7151, а потому можно сделать вывод, что в период с июня 1992 г. по апрель 2010 г. 71,51 % ежемесячных колебаний курса доллара (зависимая переменная Y), согласно уравнению регрессии, объяснялись изменением порядкового номера месяца (независимая переменная 7).
Другой параметр регрессионной статистики — НОРМИРОВАННЫЙ R- КВАДРАТ. Дело в том, что при добавлении в уравнение регрессии дополнительных факторов (независимых переменных) величина коэффициента детерминации R2 соответственно растет. Поэтому чтобы сделать сравнения коэффициентов детерминации между уравнениями регрессии с разным числом факторов более сопоставимыми, используется нормированный R2, величина которого корректируется в сторону уменьшения при добавлении в уравнение дополнительных факторов. В Пакете анализа Excel нормированный R2 вычисляют по формуле:
В нашем случае
Еще один параметр регрессионной статистики — СТАНДАРТНАЯ ОШИБКА, или остаточное стандартное отклонение, которое можно найти по следующей формуле:
НАБЛЮДЕНИЯ — этот параметр регрессионной статистики показывает число наблюдений п, равное 215 (т. е. числу месяцев с июня 1992 г. по апрель 2010 г., по которым у нас есть данные).
В таблице 2.3 дается дисперсионный анализ, т. е. анализ изменения результативного признака под воздействием включенных в уравнение регрессии факторов.
При этом столбцы этой таблицы имеют следующую интерпретацию.
1. Столбец df (degrees of freedom) сообщает число степеней свободы. Причем для строки РЕГРЕССИЯ число степеней свободы равно
количеству факторов kфакт, включенных в уравнение регрессии. В нашем случае dfрегр = k = 1.
Для строки ОСТАТОК число степеней свободы определяется числом наблюдений и количеством факторов, включенных в уравнении регрессии. При этом dfост находится по следующей формуле:
где п — число наблюдений; к — количество факторов.
В нашем случае dfост = 215 — (1 + 1) = 213.
Для строки ИТОГО число степеней свободы находится по следующей формуле:
В нашем случае dfитого = 1 + 213 = 214.
2. Столбец SS означает сумму квадратов отклонений.
Для строки РЕГРЕССИЯ этот столбец обозначает сумму квадратов отклонений рассчитанных (предсказанных) значений результативного признака от его среднего, рассчитанного по фактическим данным:
Для строки ОСТАТОК столбец SS обозначает сумму квадратов отклонений фактических данных от их расчетных значений:
Для строки ИТОГО столбец SS обозначает сумму квадратов отклонений фактических данных от их среднего:
SS2итого можно также найти, сложив SS2регр с SS2ост: 21 779,45 + 8676,619 = 30 456,07.
3. Столбец MS означает дисперсию на одну степень свободы, которая находится по следующей формуле:
Для строки РЕГРЕССИЯ — это факторная, или объясненная, дисперсия:
Dфакт = МSфакт = 21 779,45/1 = 21 779,45.
Для строки ОСТАТОК — это остаточная дисперсия:
Dост = MSост= 8676,619/213 = 40,7353.
4. В столбце F дается фактический F-критерий Фишера, который находится путем сопоставления факторной и остаточной дисперсии на одну степень свободы. При этом F-критерий Фишера рассчитывается по следующей формуле:
Если нулевая гипотеза (об отсутствии связи между переменными, включенными в уравнение регрессии) справедлива, то факторная и остаточная дисперсия не отличаются друг от друга. Чтобы уравнение регрессии было признано значимым, требуется опровержение нулевой гипотезы, а для этого необходимо, чтобы факторная дисперсия превышала остаточную дисперсию в несколько раз. Статистиками разработаны соответствующие таблицы критических значений F-критерия при разных уровнях значимости нулевой гипотезы и различном числе степеней свободы. При этом следует иметь в виду, что табличное значение F-критерия — это максимальная величина отношения факторной дисперсии к остаточной дисперсии, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Если фактический (т. е. рассчитанный для этого уравнения регрессии) F-критерий больше его табличного значения, то нулевая гипотеза об отсутствии связи между результативным признаком и факторами отклоняется и делается вывод о существенности этой связи.
5. В столбце ЗНАЧИМОСТЬ F дается уровень значимости, который соответствует величине фактического F-критерия Фишера, вычисленного для этого уравнения регрессии. В нашем случае значимость Fфакт практически равна нулю, т. е. Fфакт больше Fтабл (значения F-критерия Фишера при уровне значимости 0,05 или 5 % можно найти в любом учебнике по статистике) при 1 %-ном и 5 %-ном уровне значимости. Отсюда можно сделать вывод о статистической значимости уравнения регрессии, поскольку связь между включенными в него факторами в этом случае доказана.
В тех случаях, когда значимость F бывает больше, например, 0,01, но меньше 0,05, то тогда делается вывод, что Fфакт