меньшеFтабл при 1 %-ном уровне значимости, но больше Fтабл при 5 %-ном уровне значимости. Следовательно, в этой ситуации нулевая гипотеза об отсутствии связи между результативным признаком и факторами, включенными в уравнение регрессии, на 1 %-ном уровне значимости не отклоняется, но отклоняется на 5 %-ном уровне значимости. Таким образом, в этом случае каждый исследователь должен сам решить, считать ли 5 %-ный уровень значимости F-критерия достаточным для того, чтобы сделать вывод о статистической значимости уравнения регрессии. При этом следует иметь в виду, что если значимость F-критерия выше 0,05, т. е. Fфакт меньше Fтабл при 5 %-ном уровне значимости, то в этой ситуации уравнение регрессии, как правило, считается статистически незначимым.

В таблице 2.4 сгенерированы коэффициенты уравнения регрессии и оценки их статистической значимости.

1. В столбце КОЭФФИЦИЕНТЫ представлены коэффициенты уравнения регрессии. На пересечении этого столбца со строкой Y-ПЕРЕСЕЧЕНИЕ дан свободный член, который в формуле линейного уравнения регрессии (2.2) обозначен символом а = 1,995805.

Во второй строке этого столбца, обозначенной как Time (независимая переменная — порядковый номер месяца), сгенерирован коэффициент уравнения регрессии, который в формуле (2.2) представлен символом b = 0,162166.

Таким образом, данные, представленные в столбце Коэффициенты, дают нам возможность составить путем подстановки соответствующих цифр в формулу (2.2) следующее уравнение линейной парной регрессии:

Y = 0,1622Х + 1,9958,

где независимая переменная X означает порядковый номер месяца (июнь 1992 г. — 1, а апрель 2010 г. — 215);

зависимая переменная Y — ежемесячное значение курса доллара.

При этом экономическая интерпретация этого линейного уравнения следующая: в период с июня 1992 г. по апрель 2010 г. курс доллара к рублю ежемесячно рос со средней скоростью 16,22 коп. при исходном уровне временного ряда в размере 1 руб. 99,58 коп. В свою очередь геометрическая интерпретация этого линейного уравнения следующая: свободный член уравнения 1,9958 показывает точку пересечения линии тренда с осью Y, а коэффициент уравнения 0,1622х равен углу наклона линии тренда к оси Х(см. рис. 2.5).

2. В столбце СТАНДАРТНАЯ ОШИБКА сгенерированы стандартные ошибки свободного члена и коэффициента регрессии, значения которых даны во втором столбце табл. 2.4. При этом стандартная ошибка свободного члена уравнения регрессии находится по следующей формуле:

где MSост = Dост — остаточная дисперсия, приходящаяся на одну степень свободы.

Для нашего случая стандартная ошибка свободного члена уравнения регрессии равна

В свою очередь стандартная ошибка коэффициента регрессии оценивается по следующей формуле:

Для нашего случая стандартная ошибка коэффициента регрессии имеет следующее значение:

3. В столбце t-СТАТИСТИКА даны расчетные значения /-критерия. При этом для свободного члена /-статистика вычисляется по формуле

где а — свободный член уравнения.

В нашем случае t-статистика находится следующим образом:

Для коэффициента регрессии t-статистика рассчитывается по формуле

где b — коэффициент регрессии.

Тогда Z-статистика находится следующим образом:

4. В столбце Р-ЗНАЧЕНИЕ сгенерированы уровни значимости, соответствующие значениям t-статистики.

В Excel Р-значение находится с помощью следующей функции:

СТЬЮДРАСП (X = tст; df= п- к — 1; хвосты = 2),

где в опции X дается t-статистика, для которой нужно вычислить двустороннее распределение;

в опции df — число степеней свободы; в опции хвосты — цифра 2 для двустороннего распределения.

Для свободного члена уравнения эта функция приобретает следующий вид:

СТЬЮДРАСП (2,284573; 215-1-1= 213; 2) = 0,023323.

Следовательно, Р-значение свободного члена уравнения показывает, что этот коэффициент значим лишь при 5 %-ном уровне значимости, но не при 1 %-ном уровне значимости.

Для коэффициента регрессии P-значение в Excel находится следующим образом[4]:

СТЬЮДРАСП (23,12267; 215 — 1–1= 213; 2) = 5,4Е — 60 = 0,0.

Следовательно, P-значение коэффициента регрессии показывает, что этот коэффициент значим не только при 5 %-ном уровне значимости, но и при 1 %-ном уровне значимости.

5. Столбцы НИЖНИЕ 95 % и ВЕРХНИЕ 95 % показывают соответственно нижние и верхние интервалы значений коэффициентов при 95 %-ном уровне значимости. Для расчета доверительных интервалов сначала устанавливается критическое значение /-критерия, которое в Excel находится с помощью функции

СТЬЮДРАСПОБР (? = 0,05; df = n — k — 1);

где в опции ? — величина риска, при котором коэффициент регрессии (или свободный член) может оказаться за рамками установленных доверительных интервалов;

в опции df — число степеней свободы.

Таким образом, для 95 %-ного уровня надежности t-критерий = СТЬЮДРАСПОБР (? = 0,05; df= 215 — 1–1) = 1,9712.

Далее для свободного члена уравнения находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА ? t-критерий = 1,995805 — (0,873601 ? 1,9712) = 0,273794.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА ? t-критерий = 1,995805 + (0,873601 ? 1,9712) = = 3,717815.

Для коэффициента регрессии TIME находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА ? t-критерий = 0,162166 — (0,007013 ? 1,9712) = 0,148342.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА ? t-критерий = 0,162166 + (0,007013 ? 1,9712) = 0,175991.

6. Столбцы НИЖНИЕ 99 % и ВЕРХНИЕ 99 % показывают соответственно нижние и верхние интервалы значений коэффициентов при 99 %-ном уровне значимости. При этом значения столбца НИЖНИЕ 99 % и ВЕРХНИЕ 99 % находятся аналогичным образом, как и значения столбцов НИЖНИЕ 95 % и ВЕРХНИЕ

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату