точки s = 1. В частности, эта удивительная гипотеза утверждает, что если z(1) равно или приближается к нулю, то там есть бесконечное число рациональных решений, и, соответственно, если z (1) не равно нулю, то там есть только конечное число таких решений.

Проблемы описания действий над целочисленными множествами с помощью алгебраических уравнений типа

х2 + у2 = z2

на современном этапе решаются с привлечением ЭВМ и на основе использования достаточно простых алгоритмов, огромного объема вычислений и на последнем этапе — отбора полученных решений по определенным критериям.

Хотелось бы подчеркнуть, что в описанной задаче неявно просматривается идея Каббалы — самозначимость множества цифр, которым придается сакральное значение. Ведь что такое “единица»? Это ступенька перехода количества в качество, когда набор каких-либо элементов (однородных или неоднородных) образует объем, определяемый и выделяемый из окружающего мира: атом, кирпич, человек, Солнечная система и пр. Придавать единице особое, мистическое, значение вред ли целесообразно.

Однако у многих математиков всегда присутствует желание свести все к единым, по возможности целочисленным решениям и, соответственно, к единой формуле. Конечно, идеальное представление позволяет более или менее адекватно представить окружающую нас Вселенную, но не всегда и не везде действуют законы простых чисел. В частности, в особых точках (нуле или разрыве функции) решения всегда значительно усложняются. Математически это ведет к неоднозначности результатов и по формальным признакам дает возможность спекулятивных (как толковали «многозначность» в средневековье) решений. Но при математических преобразованиях теряется смысл этих решений. Нуль и единица, относящиеся к любому конкретному объекту, обозначают всего лишь его отсутствие или этап для дальнейшего счета. Поэтому разговор о стремящемся к нулю или равном нулю объекте физической Вселенной представляется уходом в ту область, откуда (при определенных граничных условиях) может появиться либо этот предполагаемый объект, либо нечто иное, либо вообще ничего.

В области вблизи единицы тоже не для всех объектов ясно, что надо прибавить или убавить для того, чтобы исследуемый объект оставался именно тем, чем мы его считаем.

В гипотезе, естественно, есть определенный практический смысл, но возникает вопрос о полноте отображения граничных условий при исчезающе малых их значениях или вообще при их отсутствии, а это уже — типичный случай выбора стратегии аналогово-цифрового аппарата.

Гипотеза Пуанкаре

Если мы натянем резиновую ленту вокруг поверхности яблока, то затем мы можем медленно стянуть ее вниз, в точку без разрыва, и не допуская соскальзывания с поверхности. Если же мы представим себе, что в другой руке такая же лента натянута вокруг бублика, то понятно, что невозможно стянуть резиновую ленту к такой же точке без разрыва ленты или разрушения бублика. Мы говорим, что поверхность яблока «просто соединена» (непрерывна), а поверхность бублика — нет. Пуанкаре больше ста лет назад понял, что двухмерная сфера существенно характеризуется этим свойством «простого соединения», и поставил вопрос о трехмерной сфере (набор точек в четырехмерном пространстве на одинаковом расстоянии от рассматриваемой фигуры-оригинала). Этот вопрос очень труден, и математики бьются над его решением до сих пор.

Предположение Ходжи

В XX веке математики открыли эффективные пути исследования форм сложных объектов. Основным является вопрос о том, до какой степени сложности мы можем приближать предлагаемые объекты, соединяя их вместе из простых геометрических блоков увеличивающихся размеров. Эта технология обещает быть очень сильной и должна привести к образованию мощных инструментов, которые позволят математикам достичь большого прогресса в каталогизации всего многообразия объектов исследования. К сожалению, геометрические начала этого процесса я рамках данного представления остаются неясными. В некоторых случаях приходится подставлять куски, не имеющие никакой геометрической интерпретации. В предположении Ходжи утверждается, что для каждого вида пространства, определяемого алгебраическим многообразием, фигуры, называемые кругами Ходжи, рационально-линейно формируются из геометрических фигур, называемых алгебраическими кругами.

В обеих задачах ставится очень важный практический вопрос о возможности описаний и вычисления многомерной поверхности, что необходимо для расчетов пространственных взаимодействий, например, химических реакций, тепло- и массопереноса и т. д. Здесь ответ на вопрос определяется рациональным выбором системы координат. Обычно используются прямоугольные системы, а полярные существенно упрощаются, что делает неизбежными ошибки даже при наиболее простых работах на поверхности геоида (Земли). Применение же более сложных систем неевклидовой геометрии, четырехмерных и более пространств либо сопровождается значительным увеличением объемов расчетов, либо ведет к многозначности ответа, либо происходит и то и другое вместе.

Предложения о сведении любой структуры к набору достаточно простых (в смысле математического описания) геометрических фигур являются перспективными. Но! По формальным признакам, что осложняет перенос решений в ЭВМ, возникают особые точки; где решения неоднозначны.

Предложенная задача Ходжи и является одной из попыток как-то скорректировать неоднозначность решения. При ее решении представляется наиболее разумным применить аналого-цифровой подход.

Известная нам Вселенная в своей основе состоит из полевых структур, в частности атомных и субатомных, образующих и так называемую материю-субстрат с более или менее определенными границами. Каждая частица имеет границу объема, далее которой она перестает быть сама собой. Определение этой границы является аналоговой операцией, констатирующей, где происходит переход количества в качество. Далее происходит просто цифровой счет. Это и есть наиболее общее решение задачи. Автор считает, что, скоординировав работу известных ему специалистов и финансируя эту работу так, как она того заслуживает, и посвятив ей лет 5–6, он мог бы получить как одно из решений этой задачи, так и несколько сопутствующих решений задач, здесь не приведенных по определению эталонных значений и систем координат, но предпочитает оставить эту рутинную (в хорошем смысле слова) работу коллективам математиков и физиков. К тому же примерная стоимость экспериментов и расчетов на 2 порядка превысит размер объявленной премии.

Здесь важно определить уровень размерности, где указанный цифровой счет производится. Например там, где присутствует гладкая с точки зрения технических целей поверхность, при приближении измерительного эталона к размеру атомных частиц поверхность становится достаточно сложной и не совсем ровной. Значит, здесь следует решить более общую задачу, такую как выбор или создание системы координат, назначение эталона единицы величины и «сшивание» решений в особых точках.

Задачи типа определения, где какая поверхность у кольца Мебиуса, или геометрической фантазии Эшера очень интересны, познавательны и стимулируют воображение на создание оригинальных идей и решений. Однако здесь допускается одна маленькая хитрость — не указывается, в какой системе координат все это существует, так как в этом случае вся таинственность пропадает.

Если мы, например, рассмотрим кольцо Мёбиуса во внешней трехмерной координатной системе с фиксированным положением нуля отсчета и «+» или «-», то внешним или внутренним будет проекция поверхности на соответствующую плоскость. И всё! Это дает абсолютно однозначное решение. Если положение кольца изменилось, соответственно изменятся и положения проекций. Если система координат

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату