где Xk – наблюдаемый результат i – го испытуемого выборки по тестовой форме k ; Ti – его истинный балл; Eik – суммарная ошибка измерения при оценке i – го испытуемого с помощью k – й формы теста.

Использование аксиом и предположения о нормальном характере распределения статистик по тесту приводит к фундаментальному соотношению классической теории тестов, связывающему дисперсию наблюдаемых баллов Sx2, дисперсию истинных баллов Sт2 и дисперсию ошибок измерения Sе2 согласно которому Sx2= Sт2+ Sе2,

где Sx2 , в свою очередь, состоит из двух слагаемых, одно из которых – наиболее важная общая часть дисперсии, составляющая основу корреляционных и дисперсионных методов исследования качества теста, а другое – специфическая часть. Принято счи тать, что общая часть определяется различиями в подготовке испытуемых, в то время как специфическая часть дисперсии порождается различиями в содержании заданий теста. Разделив на Sx2 почленно равенство, получим

 Sx2/ Sx2 = Sт2 / Sx2 + Sт2/ Sx2, или Sт2 / Sx2 = 1 – Sе2/ Sx2

где следует понимать как среднее арифметическое дисперсий ошибок для различных испытуемых из генеральной совокупности, поскольку ошибка при оценке истинного балла будет меняться для различных испытуемых группы.

Естественно предположить, что чем ближе Sx2 к Sт2 , тем выше корреляция между множеством наблюдаемых баллов X и множеством истинных баллов T и, следовательно, тем надежнее тест. Поэтому отношение Sт2/ Sx2 = rн обычно трактуют как характеристику надежности теста.

Одним из способов вычисления надежности суммарной шкалы является разбиение суммарной шкалы случайным образом на две половины. Если суммарная шкала совершенно надежна, то следует ожидать, что обе части абсолютно коррелированы (т.е. r = 1,0). Если суммарная шкала не является абсолютно надежной, то коэффициент корреляции будет меньше 1. Можно оценить надежность суммарной шкалы посредством коэффициента Спирме–на—Брауна:

rсб = 2rxy /(1 + rxy),

где rсб – коэффициент надежности; rxy – корреляция между двумя половинами шкалы х и у.

Если используемая шкала коррелирует с измеряемым показателем, то можно говорить о достоверности шкалы, т.е. о том, что она действительно измеряет то, для чего создана, а не что–нибудь другое. Построение достоверной выборки – это продолжительный процесс, при котором исследователь изменяет шкалу в соответствии с различными внешними критериями, теоретически связанными с той концепцией, для подтверждения которой и строится шкала. Фактически достоверность шкалы всегда ограничивается ее надежностью, поэтому важной составляющей анализа данных является корреляция, представляющая собой меру взаимозависимости переменных. При заданной надежности двух связанных между собой измерений (т.е. шкалы и исследуемого показателя) можно оценить корреляцию между истинными значениями разных измерений. Это изменение корреляции обусловлено либо значениями, задаваемыми пользователем, либо реальными исходными данными.

Наиболее известна корреляция Пирсона. При вычислении корреляции Пирсона предполагается, что переменные измерены, как минимум, в интервальной шкале. Некоторые другие коэффициенты корреляции могут быть вычислены для менее информативных шкал (порядковых). Коэффициенты корреляции, как правило, изменяются в пределах от–1,00 до +1,00. Значение–1,00 показ ы вает, что переменные имеют строгую отрицательную корреляцию. Значение +1,00 свидетельствует, что переменные имеют строгую положительную корреляцию, а значение 0,00 соответствует отсутствию корреляции.

Наиболее часто используемый коэффициент корреляции Пирсона r называется также линейной корреляцией и измеряет степень линейных связей между переменными. Корреляция Пирсона (далее – корреляция) определяет степень, с которой значения двух переменных пропорциональны друг другу, значение коэффициента корреляции не зависит от масштаба измерения. Например, корреляция между ростом и весом будет одной и той же, независимо от того, проводились измерения в дюймах и фунтах или в сантиметрах и килограммах. Корреляция высокая, если на графике зависимость можно представить прямой линией с положительным или отрицательным углом наклона. Такая прямая называется прямой регрессии, или прямой, построенной методом наименьших квадратов. Последний термин связан с тем, что сумма квадратов расстояний (вычисленных по оси Y) от наблюдаемых точек до прямой является минимальной. Заметим, что использование квадратов расстояний приводит к тому, что оценки параметров прямой сильно реагируют на выбросы.

Коэффициент корреляции Пирсона (r) представляет собой меру линейной зависимости двух переменных x и y :

где Sx , Sy – стандартные отклонения переменных.

Если возвести его в квадрат, то полученное значение коэффициента детерминации r2 представляет долю вариации, общую для двух переменных, или степень зависимости (связанности этих переменных). Чтобы оценить зависимость между переменными, нужно знать как величину корреляции, так и ее значимость. Уровень значимости, вычисленный для каждой корреляции, зависит от объема выборок и представляет собой главный источник информации о надежности корреляции. Критерий значимости основывается на предположении о том, что распределение отклонений наблюдений от регрессионной прямой для зависимой переменной Y является нормальным с постоянной дисперсией для всех значений независимой переменной X. По определению, выбросы являются нетипичными, резко выделяющимися наблюдениями. Так как при построении прямой регрессии используется сумма квадратов расстояний наблюдаемых точек до прямой, то выбросы могут существенно повлиять на наклон прямой и, следовательно, на значение коэффициента корреляции. Поэтому единичный выброс (значение которого возводится в квадрат) способен существенно изменить наклон прямой и, следовательно, значение корреляции. Если размер выборки относительно мал, то добавление или исключение некоторых данных способно оказать существенное влияние на прямую регресии и коэффициент корреляции. Выбросы могут не только искусственно увеличить значение коэффициента корреляции, но и реально уменьшить существующую корреляцию. Считается, что выбросы представляют собой случайную ошибку, которую следует контролировать. Чтобы не быть введенными в заблуждение полученными значениями, необходимо проверить на диаграмме рассеяния каждый важный случай значимой корреляции.

Другим возможным источником трудностей, связанным с линейной корреляцией Пирсона r, является форма зависимости. Корреляция Пирсона r хорошо подходит для описания линейной зависимости. Отклонения от линейности увеличивают общую сумму квадратов расстояний от регрессионной прямой, даже если она представляет истинные и очень тесные связи между переменными. Если кривая монотонна (монотонно возрастает или, напротив, монотонно убывает), то можно преобразовать одну или обе переменные, чтобы сделать зависимость линейной, а затем уже вынислить корреляцию между преобразованными величинами.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×