задачи, нужно знать производительность одного комбайна. Однако нам неизвестно, сколько часов перед завершением работы по плану все комбайны работали вместе. Поскольку удобнее вводить одноименные неизвестные, то эту величину обозначим через y, а через x обозначим количество часов, необходимых одному комбайну, чтобы убрать весь урожай. Тогда производительность комбайна будет равна 1/x.

19.14. Пусть братьям а, аq и аq? лет. Если младший получит x рублей, то остальные два получат xq и xq? рублей. Условия задачи позволяют составить три уравнения.

19.15. После того как числа, о которых говорится в задаче, будут обозначены буквами а, b и с и условия задачи будут переведены на математический язык, мы получим два уравнения с тремя неизвестными. Достаточно ли этого, чтобы решить задачу?

19.16. Воспользоваться методом математической индукции, что позволит доказать формулы для аn и bn.

19.17. Решив данное тригонометрическое уравнение, получим две серии углов, каждая из которых является арифметической прогрессией с известной разностью и первым членом, равным нулю. В каком случае две арифметические прогрессии могут быть объединены в одну?

K главе 20

20.1. Данное неравенство эквивалентно такому:

1/2? + ... + 1/n? < 1.

Оценить каждое слагаемое так, чтобы легко было оценить всю сумму, стоящую слева.

20.2. Домножить все члены на d.

20.3. Чтобы разложить дробь  на простейшие, можно начать с разложения дроби , а результат умножить на .

20.4. Слева стоит сумма членов геометрической прогрессии.

20.5. Выписать все коэффициенты многочлена 1 + x + 2x? + ... + nxn и под ними написать коэффициенты того же многочлена, записанные в обратном порядке. Рассмотреть сумму произведений стоящих друг под другом чисел.

20.6. В левой части неравенства стоит абсолютная величина суммы членов бесконечной геометрической прогрессии со знаменателем ?2x.

20.7. Каждое слагаемое k · k! можно представить в виде (k + 1)k! ? k(k ? 1)!. При этом следует иметь в виду, что 0! = 1. (!)

20.8. Коэффициенты в правой части образуют арифметическую прогрессию с разностью 3. Если домножить Sn на x?, то справа получим сумму, все члены которой, кроме крайних, имеют коэффициент, отличающийся от подобного коэффициента Sn на 3.

20.9. Рассмотреть тождество

(x + 1)5 = x5 + 5x4 + 10x? + 10x? + 5x + 1

и положить в нем последовательно x = 1, 2, ..., n.

20.10. В n-й группе n членов. Рассмотрите отдельно случаи, когда n четное и n нечетное.

20.11. Удобнее найти 2Sn sin ?/2n.

20.12. Можно разбить эту сумму на 1 00 сумм:

каждая из которых является суммой членов геометрической прогрессии. Однако попытайтесь решить эту задачу проще, обозначив искомую сумму через в и осуществив над ней некоторое несложное преобразование.

20.13. Общий член ряда имеет вид  Чтобы воспользоваться формулой геометрической прогрессии, нужно избавиться от 2 n в числителе. Чтобы понять, как это лучше сделать, запишите рядом два соседних члена ряда.

K главе 21

21.1. Если все, сидящие за круглым столом, одновременно сдвинуться на один стул в одном направлении, то у каждого останутся те же самые соседи.

21.2. Представить искомое число в виде разности числа всех перестановок из пяти элементов и перестановок, не удовлетворяющих условиям задачи.

21.3. Три разряда каждого числа должны быть заняты двойками. В оставшиеся четыре разряда можно поместить любые из восьми цифр, что даст 84 вариантов.

21.4. Задачу следует начать решать в предположении, что есть разные цифры l1, l2 и l3, которые входят в каждое число, а остальные пять цифр равноправны.

21.5. Легче найти число всевозможных размещений экскурсантов по каютам в предположении, что каюты неравноценны. Пусть таких размещений будет N, а размещений, о которых идет речь в задаче, K. Поскольку из каждого размещения экскурсантов по равноценным каютам можно получить 8! размещений по неравноценным каютам, то K · 8! = N.

21.6. В записи k-го члена суммы произвести сокращение на k.

21.7. Нужно найти такие n, для которых равенство

выполняется при некотором k.

21.8. Представить а + b + с + d в виде (а + b) + (с + d) и осуществить возведение в n-ю степень по правилам возведения в степень двучлена.

21.9. Коэффициент при xk будет равен числу членов, содержащих xk при почленном перемножении двух одинаковых многочленов. Придется различать случай, когда члены, содержащие xk, могут быть получены в результате умножения друг на друга членов суммы 1 + x + x? + ... + xk ? 1 + xk

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату