геометрическим нескольких чисел.

24.7. Чтобы найти максимум AB + BC, удобно ввести углы x и у (рис. 1.24.7), имея в виду, что x + у = ? ? ?, и перейти с помощью теоремы синусов к тригонометрическим соотношениям. (!)

24.8. Если обозначить катеты основания через а и b, то боковая поверхность призмы равна

причем ab = 4.

24.9. Квадрат должен быть вписан в шестиугольник так, чтобы не нарушалась симметрия, т. е. центр квадрата должен совпадать с центром шестиугольника.

24.10. Прежде всего необходимо обратить внимание на свойства квадратного трехчлена, стоящего в знаменателе. Его дискриминант отрицателен и, следовательно, трехчлен не может быть равен нулю при действительных x.

Если обозначить теперь данную дробь через у, то можно получить квадратное уравнение относительно x, в котором у играет роль параметра.

24.11. Если ребра параллелепипеда обозначить через а, b и с, то условие задачи можно записать в виде системы

Из второго и третьего неравенств следует, что

ab + с(а + b) ? ab + 5с.

24.12. Чтобы найти наименьшее значение этой функции, естественно выделить полный квадрат. Однако удобнее вначале перейти от котангенсов к косекансам, что позволяет выразить функцию только через синусы:

Теперь в числителе следует выделить полный квадрат разности. При этом могут представиться два случая, в зависимости от знака произведения sin (? + x) sin (? ? x). Чтобы не рассматривать их отдельно, можно необходимые преобразования записать так:

sin? (? + x) + sin? (? ? x) = [|sin (? + x)| ? |sin (? ? x)|]? + 2 |sin (? + x) sin (? ? x)|.

24.13. Известно, что arcsin x + arccos x?/2 . Поэтому данную функцию удобно преобразовать так, чтобы воспользоваться этим соотношением.

24.14. Воспользоваться преобразованием нормирования:

после чего коэффициенты при sin ? и cos ? можно объявить косинусом и синусом общего аргумента ?, т. е.

Функция у достигает своего наименьшего значения

когда sin (? + ?) = ?1, и наибольшего значения

при sin (? + ?) = 1. (!)

24.15. Систему естественно привести к виду

Свободные члены равны, соответственно, 5?, 12? и 5 · 12. Удобно каждое из соотношений разделить на его свободный член.

Вторые указания

K главе 1

1.1. Из треугольника AO1D определить АO1; если известен радиус окружности O1 (см. рис. I.1.1 на с. 114).

1.2. Зная AB, можно найти AD и радиус ВО1 описанной окружности (рис. II.1.2[15]). Нужно лишь заметить, что угол ABD равен ?/2 ? ?, а ВE = АB/2.

1.3. Возможны два случая взаимного расположения треугольника и окружности. Либо окружность будет вписана в треугольник так, что каждая точка касания делит соответствующую сторону пополам, либо одна вершина треугольника окажется внутри окружности, а две другие — вне.

Найдите решение, не зависящее от взаимного расположения окружности и треугольника. Для этого достаточно рассмотреть треугольник, который получится, если соединить середины сторон данного треугольника.

1.4. Чтобы найти отношение площадей треугольников А1В1С и АВС, нужно применить теорему об отношении площадей треугольников, имеющих равный угол.

В обозначениях, введенных на рис. II.1.4. имеем

С помощью теоремы о биссектрисе внутреннего угла треугольника остается выразить а1, a2, b1, b2, c1, с2 через а, b и с.

1.5. Если центр вписанной в треугольник окружности обозначить через О, то площадь треугольника АВС можно будет вычислить как сумму площадей треугольников АОВ, ВОС и СОА. При этом каждая из сторон АО, ВО и СО может быть выражена через радиус r вписанной окружности. Площадь треугольника А1В1С< sub>1 тоже разбивается на три площади: А1ОВ1, В1ОС1 и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату