13.45. Задача сводится к уравнению типа sin ? + cos ? = 2, которое равносильно системе: sin ? = 1, cos ? = 1.

13.46. Найдя y из квадратного уравнения, следует использовать и его выражение через x (см. указание I, с. 150). При такой замене появляется опасность приобретения посторонних корней.

13.47. Данную систему уравнений удобно переписать в виде

Легко заметить, что следствием полученной системы является уравнение cos 7x = 0, содержащее в качестве корней не только все числа, для которых cos x = 0, но и все корни второго уравнения. B самом деле, при cos 7x = 0 получим cos? 7x/2 = 1 и, следовательно, cos? x/2 = ? . Остается отсеять посторонние значения x.

13.48. Левая и правая части преобразуются к виду, когда в знаменателе и в числителе появляются общие множители. Нужно следить за ограничениями, а в конце провести отбор решений.

13.49. Все ограничения можно объединить: sin 4x ? 0. Эти значения нужно исключить из решений уравнения, полученного после преобразований.

13.50. Следить за равносильностью всех преобразований. Отобрать среди корней числителя те, которые не обращают в нуль знаменатель.

13.51. Из полученных значений t нужно отбросить те, для которых sin t = 0, cos t = 0 и cos 2t = 0, а также (это будет видно в процессе преобразований) cos 2t = ?. Первые три ограничения можно объединить: sin 4t ? 0.

К главе 14

14.4. Когда мы заменим sin 2x и cos 2x на их выражения через tg x, могут быть потеряны те решения неравенства, при которых sin 2x и cos 2x существуют, а tg x не существует. Однако tg x входит в правую часть данного неравенства, а потому значения x, при которых tg x не существует, не могут быть решениями этого неравенства.

14.5. Способ 1. Чтобы найти секторы круга, в которых tg 2 x ? 0, нужно вначале построить радиусы, соответствующие углам, для которых tg 2x = 0 и tg 2x не существует.

Способ 2. B результате применения формулы тангенса двойного угла возможна потеря решений: из области определения выпадают точки, в которых cos x = 0.

14.8. Так как коэффициент при старшем члене положителен, то знаки корней зависят от знака свободного члена.

14.10. Найти те значения k, при которых полученное неравенство осуществимо.

14.11. Воспользоваться тем, что sin x + cos x = v2 cos (x ? ?/4), и решить неравенство относительно y = cos (x ? ?/4).

14.12. Произведение cos x cos 3x, стоящее в знаменателе, выразить через cos 2x. Получится алгебраическое неравенство относительно y = cos 2x.

14.13. При возведении неравенства в квадрат достаточно потребовать, чтобы cos x ? 0.

14.15. Обозначить sin ? через y и разложить получившийся многочлен третьей степени на множители, воспользовавшись теоремой о делителях свободного члена и первого коэффициента.

14.16. Выражение  можно преобразовать, воспользовавшись разложением sin 3x = sin (2x + x).

14.17. Так как абсцисса вершины параболы оказывается внутри интервала ?1 < z < 1, а сама парабола направлена рогами вверх, то условие задачи равносильно тому, что ордината вершины положительна.

К главе 15

15.1. Неравенство сводится к квадратному, если положить logsin x  2 = y. При этом необходимо следить за равносильностью преобразований.

15.3. Поскольку основание логарифма больше единицы, неравенство между логарифмами можно заменить таким же неравенством между cos x и tg x.

15.4. Остается перейти к системе тригонометрических неравенств, равносильной логарифмическому неравенству. При этом нужно помнить, что все функции, стоявшие в условии под знаками логарифма, должны быть положительными.

15.5. Для дальнейшего нужно иметь в виду, что условие 0 < | а| < 1 не равносильно неравенству ?1 < а < 1.

15.6. При дальнейшем решении мы столкнемся с выбором целочисленного аргумента. Следует помнить, что мы имеем дело с |lg x|, а не с lg x.

15.7. Неравенство равносильно условию, что знаменатель положителен, если при этом arccos (x? ? 3x + 2) существует и отличен от нуля.

15.8. Если 1 ? x > 0, то правая и левая части неравенства попадают в интервал от 0 до ?/2 , который является общим интервалом монотонности для тангенса и косинуса. Если взять косинус от правой и левой частей неравенства, а знак неравенства изменить на противоположный, то получим неравенство, равносильное данному.

15.9. Неравенство 4x ? x? ? 3 > 1 удовлетворяется лишь при x = 2. Докажите, что тогда оба сомножителя должны быть раны единице.

15.10. Первая система не имеет решения, поскольку из условия А = 0 следует, что tg x = 1. Но tg x стоит в основании логарифма и не может быть равным единице. Остается решить вторую систему, которую можно упростить, заметив, что tg x > 1.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату