triang:=blimps+(squarewave-1)*(sawtooth-1);

plot([sawtooth+5, upside+3, RC,blimps-2,squarewave-4,roundsquare-6,triang-8],t=0..10,- 8..6,

color=[red,orange,green,black,magenta,brown,blue], thickness=3);

Графики зависимостей, получаемые с помощью представленного выше примера показаны на рис. 3.1. Эти зависимости можно использовать в качестве моделей сигналов при моделировании электрических и электронных цепей (см. главу 11).

Рис. 3.1. Графики зависимостей, получаемых с помощью функций сравнения

3.2.6. Примеры вычисления тригонометрических функций

В ядре Maple (и других СКМ) определены следующие тригонометрические функции: sin — синус; cos — косинус; tan — тангенс; sec — секанс; csc — косеканс; cot — котангенс. Все эти функции являются периодическими (с периодом 2π, кроме тангенса и котангенса, у которых период равен π) и определены для действительного и комплексного аргументов. Примеры вычислений (файл calcfun):

> [sin(1), sin(1.)];

[sin(1), .8414709848]

> sin(x)^2+cos(x)^2;

sin(x)² +cos(x)²

> simplify(%);

1

> simplify(tan(x)*cos(x));

sin(x)

> sec(2+3*1);

sec(2 + 3I)

> sec(2.+3*I);

-.04167496441 + .09061113720 I

> cot(I);

-I coth(1)

> csc(I);

-I csch(1)

Многие свойства тригонометрических функций можно оценить, рассматривая их графики. Для построения таких графиков средствами Maple можно использовать функцию plot. Примеры построения графиков тригонометрических функций даны в файле tfris.

3.2.7. Гармонический синтез пилообразных колебаний

Фундаментальная роль функций синуса и косинуса проявляется в решении задач спектрального анализа и синтеза. В Maple они реализуются с помощью функций прямого и обратного преобразований Фурье [39, 43]. Однако, смысл гармонического синтеза проще всего понять, просто суммируя синусоидальные функции с кратной частотой — гармоники. При этом характер результирующего колебания зависит от того, какие гармоники берутся (все, только четные или только нечетные), а также от того, по какому закону меняется амплитуда колебаний и их фаза в зависимости от номера гармоники. Покажем это на паре примеров.

На рис. 3.2 показан пример гармонического синтеза двух периодов пилообразного колебания (сигнала) при суммировании 3, 10 и 60 гармоник. Отчетливо видно, что по мере увеличения числа гармоник форма колебаний действительно приближается к треугольной. В условиях резкого ограничения числа гармоник в местах предполагаемого разрыва колебаний наблюдаются характерные колебания — эффект Гиббса.

Рис. 3.2. Гармонический синтез треугольных колебаний по 3, 10 и 60 гармоникам

Колебания описанной формы получаются за счет синтеза всех гармоник, причем амплитуда гармоник равна 1/k, где k — номер гармоники.

3.2.8. Гармонический синтез меандра

А теперь рассмотрим синтез симметричных прямоугольных колебаний, получивших название — меандр. Для синтеза меандра надо использовать только нечетные гармоники, т. е. с номерами n=1, 3, 5, … Проще всего получить нечетные числа, используя вместо параметра n значение 2n–1. Тогда для получения 3, 9 и 59 нечетных гармоник надо будет использовать значения n до 2, 5 и 30. Рис. 3.3 иллюстрирует синтез меандра.

Рис. 3.3. Гармонический синтез меандра при n = 2, 5 и 30

Читатель, интересующийся вопросами гармонического синтеза сигналов может опробовать в нем свои силы и синтезировать колебания и сигналы других форм. Поскольку при синтезе сигнал получается в виде частотных составляющих (гармоник), то для преобразования такого сигнала можно использовать частотные фильтры.

3.2.9. Обратные тригонометрические функции и их применение

К обратным тригонометрическим функциям относятся: arcsin — арксинус; arccos — арккосинус; arctan — арктангенс; arcsec — арксеканс; arccsc — арккосеканс; arccot — арккотангенс. Примеры вычислений (файл calcfun):

> arcsin(.2);

.2013579208

> arcsin(2.);

1.570796327 - 1.316957897 I

> evalc(arcsin(5));

½π - I ln(5+2√6)

> arccos(1/2);

⅓π

> arctan(1);

¼π

> arccot(0);

½π

К этому классу функций принадлежит еще одна полезная функция:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату