> ln( -1 );
> simplify(log(exp(x)));
> assume(x,positive);simplify(log(exp(x)));
Обратите внимание на то, что в предпоследнем примере Maple отказалась вычислить «очевидное» значение выражения, но сделала это после придания х статуса предполагаемой переменной с только положительными значения.
3.2.13. Применение элементарных функция для моделирования сигналов
Системы компьютерной математики часто используются для моделирования сигналов и устройств их обработки и преобразования (см. пример в разделе 3.2.5). Рисунок 3.6 показывает построение нескольких функций, полученных с помощью комбинаций элементарных функций, включая тригонометрические функции. Такие комбинации позволяют получать периодические функции, моделирующие сигналы стандартного вида: в виде напряжения на выходе двухполупериодного выпрямителя, симметричных прямоугольных колебаний (меандр), пилообразных и треугольных импульсов, треугольных импульсов со скругленной вершиной.
Рис. 3.6. Примеры моделирования сигналов с помощью комбинаций элементарных функций
В этом рисунке запись axes=NONE убирает координатные оси. Обратите внимание, что смещение графиков отдельных функций вниз с целью устранения их наложения достигнуто просто прибавлением к значению каждой функции некоторой константы.
Приведенные выше сигналы нередко можно формировать, используя функции с условиями — например, функцию signum. Однако достоинство моделирования сигналов с помощью только элементарных функций заключается в том, что такие сигналы нередко могут обрабатываться аналитически, тогда как для функций с условиями это возможно далеко не всегда.
3.2.14. Выбор экспоненциальных функций для приближения сложных зависимостей
В природе многие зависимости имеют экспоненциальное нарастание или спад. Это характерно для апериодических и релаксационных процессов, например, таких как спад радиоактивности. Да и многие колебательные процессы имеют экспоненциальное нарастание или спад амплитуды колебаний. Кроме того, такие зависимости характерны для ряда характеристик самых разнообразных устройств и систем. Это делает целесообразным рассмотрение и визуализацию наиболее важных из
На рис. 3.7 показано начало документа на котором заданы три экспоненциальные функции и построены семейства их графиков. Представление графиков в виде семейства, а не поодиночке, позволяет наглядно представить характер изменения вида функций, что зачастую уже достаточно для выбора той или иной функции в качестве приближения (аппроксимации) некоторой сложной зависимости. После выбора зависимости используя методы регрессионного анализа можно подобрать параметры выбранной функции по методу наименьших квадратов.
Рис. 3.7. Начало документа с тремя экспоненциальными зависимостями
Первая из представленных функций описывает зависимости, характерные для идеального диода или р-n-перехода. Две другие зависимости имеют характерные падающие участки, которые присуши, например, вольт-амперным характеристикам «лямбда»-диодов и транзисторов (первые характеризуются одной кривой, другие семейством кривых). Последняя зависимость задана функцией пользователя с тремя параметрами
Еще три зависимости, представленные на рис. 3.8 также весьма напоминают характерные для ряда систем и устройств характеристики. Первая зависимость очень похожа на нормированные резонансные кривые колебательных контуров и иных резонаторов. Другая зависимость позволяет моделировать нелинейные характеристики усилителей. Ее замечательные свойства — симметрия и возможность изменения плавности перехода от одного состояния (0) к другому (1). А третья зависимость характеризует сдвиг по горизонтали некоторой передаточной зависимости. Она также очень напоминает кривые гистерезиса магнитных материалов.
Рис. 3.8. Часть документа с тремя дополнительными экспоненциальными зависимостями
Следующая тройка зависимостей представлена на рис. 3.9. Эти зависимости напоминают ранее описанные, но с некоторыми индивидуальными особенностями. Например, средняя зависимость дает спад, а не нарастание значения «выхода» при нарастании значения переменной х. Семейство зависимостей в конце рис 3.9 характерно плавным переходом от симметричной зависимости к явно несимметричной, имеющей быстрое нарастание и относительно медленный спад. Такой характер нередко имеет выходной сигнал усилителя, возбуждаемого перепадом напряжения.
Рис. 3.9. Часть документа с еще тремя экспоненциальными зависимостями
Три последние зависимости (рис. 3.10) прекрасно подходят для описания вольт-амперных характеристик ряда электронных приборов. Первые две из них напоминают семейства вольт-амперных характеристики полевых транзисторов и электронных ламп. Верхняя соответствует приборам с постоянной крутизной, на что указывает равное расстояние между кривыми. А вторая напоминает семейство вольт- амперных характеристик полевого транзистора с нарастающей при больших токах крутизной.
Рис. 3.10. Конец документа с началом на рис. 3.7
Последняя зависимость неплохо подходит для приближения N-образной вольт-амперной характеристики туннельного диода. Это довольно старый, но хорошо известный прибор, который применяется в усилителях и генераторах высокочастотных и сверхвысокочастотных колебаний.
3.2.15. Применение функций с элементами сравнения
В алгоритме вычисления ряда функций заложено сравнение результата с некоторым опорным значением. К таким
Для комплексного аргумента х эти функции определяются следующим образом: