частицы, было бы очень трудно перенести, поскольку соображения симметрии, влекущие существование электромагнитного и слабого взаимодействий и их объединение, неотразимы. А если эти соображения верны, то должен существовать механизм нарушения симметрии, наделяющий некоторые калибровочные бозоны массой. Поэтому нечто вроде хиггсовского механизма действительно должно существовать, иначе рушится весь подход. Вероятно, оно и существует. Другое объяснение состоит в том, что частицы Хиггса могут иметь такую большую массу, что ни один ускоритель пока не может дать достаточную для их обнаружения энергию. Мир физики частиц в настоящее время ожидает реконструкции двух ускорителей, одного в CERN, другого в Лаборатории Ферми к западу от Чикаго, которые после этого будут обладать энергией, достаточной для более интенсивного поиска частиц Хиггса. И тогда либо они будут найдены, либо физикам элементарных частиц придется пересматривать одну из своих наиболее нежно любимых моделей. Надеюсь, вы сможете оценить всю важность этих поисков, поскольку от них зависит наше доверие к современному состоянию науки о веществе.
Сильное взаимодействие тоже оказывается формой проявления калибровочной симметрии. Для этого случая надо отметить, что кварки обладают, наряду с ароматом, специальным видом заряда, наделяющего их способностью взаимодействия друг с другом путем обмена глюонами. Каждый кварк может иметь только один из трех типов этих «сильных зарядов», и физики пришли к приятному соглашению называть эти заряды
Теперь мы подходим к новому варианту калибровочной симметрии. Если мы симметрично меняем цвета кварков, варьируя окраску от места к месту, то мы получаем нечто эквивалентное изменению фазы волновой функции. В этом случае три величины, три цвета, дают более сложную картину, чем одна фаза. Вместо простой группы U(1) для электромагнитного взаимодействия и несколько более сложной группы SU (2) для несколько более сложного слабого взаимодействия, нам придется рассмотреть существенно более сложную группу преобразований симметрии, под названием SU(3). Однако, так же как это было для других сил, оказывается, что, для того чтобы уравнения оставались инвариантными относительно этого более сложного калибровочного преобразования, в эти уравнения необходимо включить член, представляющий силу. Этот дополнительный член имеет в точности свойства сильного взаимодействия. Более того, если мы проквантуем это взаимодействие, калибровочные бозоны, существование которых следует из уравнений, являются безмассовыми частицами со спином 1, ответственными за силы, действующие между цветными кварками, то есть глюонами! И снова мы видим, как соблюдение симметрии в природе — на этот раз довольно сложной, скрытой симметрии — влечет существование члена уравнения, который мы опознаем как силу.
Теперь нам придется вступить в мутное интеллектуальное болото, где, пробираясь сквозь топи абстракций, мы надеемся набрести на объединение сильного и электрослабого взаимодействий, и соответственно на объединение лептонов и адронов в единый зоопарк. И снова нашим гидом, видимо, должна быть симметрия. Мы можем подозревать, что хорошо усовершенствованная группа преобразований симметрии приведет нас к успешной демонстрации того, что сильное взаимодействие и электрослабое взаимодействие есть просто две различные стороны одной силы. Если вам нужна конкретная аналогия, отличная от вращающегося куба, демонстрирующего то квадратную, то шестиугольную форму, представьте себе более сложный многогранник, показывающий с одних точек зрения квадраты и шестиугольники, а с других восьмиугольники: все эти формы являются проявлениями одного объекта.
Теория этого объединения носит название ТВО,
Наш фермионный зоопарк состоит из лептонов и адронов, которые, как теперь ясно, пасутся вместе. Имеется также зоопарк бозонов, населенный частицами-передатчиками сил, которые соединяют вместе фермионы, создавая протоны и людей, и в конечном счете дают возможность совокупностям фермионов высказывать свое мнение. Эти силы являются проявлениями единой силы. А не может ли быть, что существует даже более крупная, более сложная группа преобразований симметрии в абстрактном внутреннем пространстве некоторого вида — и еще более крупный, более сложный многогранник, — которая поворачивает некую целостность так, что одна ее сторона оказывается фермионом, а другая оказывается бозоном? Существует некоторое экспериментальное предположение, что такая
Когда исследуют эту идею, появляется много признаков ее работоспособности. Однако эта теория предсказывает также существование партнеров для известных частиц. Эти
Имеется несколько еще не разрешенных вопросов, на которые нам следует бросить взгляд. В процессе чтения вы уже могли их заметить. Один из них; почему вещество преобладает над антивеществом? Другой: почему имеется три семейства фермионов? Третий: почему существует так много фундаментальных частиц? И четвертый: почему гравитация кажется такой ускользающей силой в нашем путешествии к объединению всех сил? Лежат ли ответы на все эти вопросы в симметрии Вселенной? Является ли Вселенная гораздо более прекрасной, чем мы сегодня подозреваем? Является ли она бесконечно прекрасной и абсолютно симметричной?
Да, она может быть суперсимметричной, но она определенно не является абсолютно симметричной, иначе доли вещества и антивещества в ней были бы равными. Имеются и другие указания на ее кособокость. Существует несколько очевидных, макроскопических отклонений от симметрии. Например, большинство людей являются правшами. Никто, на самом деле, не знает, почему это так: возможно, это как-то связано с небольшим смещением сердца вправо[26], но не