говоря, это слишком сильно для общего утверждения. Однако, имеем в виду, что в подходе Бома, как мы будем обсуждать далее в этой главе, частицы 'сопровождаются' вероятностными волнами; это означает, теория Бома всегда привлекает частицы и волны, тогда как стандартный подход воображает дополнительность, которая грубо может быть обобщена как частицы или волны. Таким образом, заключение, на которое мы указываем, – что квантовомеханическое описание прошлого будет совершенно неполным, если мы говорили исключительно о частицах, двигавшихся от одной точки в пространстве в каждый определенный момент во времени (что мы должны были делать в классической физике), – тем не менее, верно. В общепринятом подходе к квантовой механике мы также должны включить изобилие других положений, которые частица могла бы занимать в любой данный момент, тогда как в подходе Бома мы должны также включить 'пробную' волну, объект, который также распределяется по изобилию других положений. (Подготовленный читатель должен заметить, что пробная волна есть та же волновая функция общепринятой квантовой механики, хотя ее воплощение в теории Бома несколько отличается). Чтобы избежать бесконечных оговорок, последующую дискуссию будем проводить с точки зрения общепринятой квантовой механики (более широко используемого подхода), оставив ссылки на Бома и другие подходы до последней части главы.

3. Для математического, но и в высшей степени педагогического рассмотрения см. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (Burr Ridge, 111.; McGraw-Hill Higher Education, 1965).

4. Вы можете попытаться привлечь дискуссию Главы 3, в которой мы изучили, что при скорости света время останавливается, чтобы доказать, что с точки зрения фотона все моменты времени есть один и тот же момент, так что фотон 'знает', как установлен выключатель детектора, когда он проходет через лучевой разветвитель. Однако, эти эксперименты могут быть проведены и с другими видами частиц, такими как электроны, которые двигаются медленнее света, а результаты останутся неизменными. Таким образом, эта точка зрения не освещает существенной физики.

5. Экспериментальные настройки, а также реально подтвержденные экспериментальные результаты, обсуждались исходя из Y. Kim, R. Yu, S. Kulik, Y. Shih, M. Scully, Phys. Rev. Lett, vol. 84, no. 1, pp. 1-5.

6. Квантовая механика также может базироваться на эквивалентном уравнении, представленном в другой форме (известной как матричная механика) Вернером Гейзенбергом в 1925. Для склонного к математике читателя уравнение Шредингера есть: Н?(x,t) = ihd?(x,t)/dt, где Н обозначает гамильтониан, ? обозначает волновую функцию, а h есть постоянная Планка.

7. Подготовленный читатель отметит, что я пропустил тут одно тонкое место. А именно, мы должны были взять комплексно сопряженную волновую функцию частицы, чтоб обеспечить, что она решает обращенную во времени версию уравнения Шредингера. Это означает, что описанный в комментарии 2 к Главе 6 оператор Т действует на волновую функцию ?(x,t) и отображает ее в ?*(x,–t). Это не имеет существенного влияния на обсуждение в тексте.

8. Бом на самом деле заново открыл и разработал дальше подход, который восходит к принцу Луи де Бройлю, так что этот подход иногда называют подходом де Бройля-Бома.

9. Для склонного к математике читателя заметим, что подход Бома локален в конфигурационном пространстве, но определенно нелокален в реальном пространстве. Изменения волновой функции в одном месте в реальном пространстве немедленно оказывают влияние на частицы, расположенные в других, удаленных местах.

10. Для исключительно ясного обсуждения подхода Жирарди-Римини-Вебера и его применения к пониманию квантового запутывания см. J. S. Bell, 'Are There Quantum Jumps?' in Speakable and Unspeakable in Quantum Mechanics (Cambridge, Eng.: Cambridge University Press, 1993).

11. Некоторые физики рассматривают вопросы из этого списка как не относящиеся к делу и являющиеся продуктом ранней путаницы в отношении квантовой механики. Волновая функция, утверждает эта точка зрения, является просто теоретическим средством, чтобы делать (вероятностные) предсказания, и не должна соответствовать никакой, кроме математической, реальности (точка зрения, которую иногда называют подходом 'Заткнись и вычисляй', поскольку он поощряет использовать квантовую механику и волновые функции, чтобы делать предсказания, не задумываясь сильно о том, что на самом деле означают и делают волновые функции). Вариант этой темы утверждает, что волновые функции никогда на самом деле не коллапсируют, но что взаимодействия с окружающей средой делают кажущимся такой коллапс. (Мы коротко обсудим версию такого подхода). Я симпатизирую этим идеям и, фактически, строго верю, что рано или поздно мы будем обходиться без услуг понятия коллапса волновой функции. Но я не нахожу первый подход удовлетворительным, так же я не готов отказаться от понимания, что происходит в мире, когда мы 'не смотрим', а второй подход – поскольку, на мой взгляд, это правильное направление, – требует дальнейших математических разработок. Основной момент в том, что измерение вызывает нечто, что есть, или похоже на или маскируется под коллапс волновой функции. Или через лучшее понимание влияния окружения, или через некоторые другие подходы, которые еще должны быть предложены, этот явный эффект требует рассмотрения, а не просто выбрасывания из головы.

12. Имеются другие спорные проблемы, связанные с многомировой интерпретацией, которые уходят дальше ее очевидной экстравагантности. Например, имеются технические проблемы определения понятия вероятности в контексте, который содержит бесконечное число копий каждого из наблюдателей, чьи измерения, как предполагается, подвержены этим вероятностям. Если данный наблюдатель на самом деле является одной из многих копий, в каком смысле мы можем сказать, что он или она имеет особую вероятность измерить этот или тот результат? Кто на самом деле есть 'он' или 'она'? Каждая копия наблюдателя будет измерять – с вероятностью 1 – любой результат, какой бы ни был получен для особой копии вселенной, в которой он или она находится, так что полная вероятностная схема требует (и требовала, и продолжает требовать) осторожной проверки в многомировой схеме. Более того, более техническое замечание, склонный к математике читатель осознает, что в зависимости от того, насколько точно определяются многие миры, может потребоваться выбор преимущественного собственного базиса. Но как должен быть выбран этот собственный базис? Была масса дискуссий и еще больше статей по этим вопросам, но на сегодняшний день нет универсально принятой резолюции. Коротко обсужденный подход, базирующийся на декогеренции, частично проясняет эти проблемы и предлагает особый взгляд на проблему

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату