выбора собственного базиса.
13. Подход Бома или де Бройля-Бома никогда не получал широкого внимания. Возможно, одна из причин этого, как обратил внимание Джон Белл в своей статье 'The Impossible Pilot Wave,' в сборнике
14. Для детального, хотя и формального обсуждения стрелы времени в целом и роли декогерентности в частности, см. H. D. Zeh,
15. Именно чтобы дать вам ощущение, как быстро наступает декогерентность – как быстро влияние окружающей среды подавляет квантовую интерференцию и при этом приводит квантовые вероятности к привычным классическим, – приведем несколько примеров. Числа приблизительны, но смысл, который они передают, ясен. Волновая функция частички пыли, плавающей в вашей жилой комнате и бомбардируемой дрожаниями молекул воздуха, будет декогерентной через примерно миллиардную от миллиардной от миллиардной от миллиардной (10–36) доли секунды. Если частичка пыли содержится в совершенной вакуумной камере и подвергается только взаимодействиям с солнечным светом, ее волновая функция будет декогерентной чуть медленее, чем за тысячную от миллиардной от миллиардной (10– 21) доли секунды. И если частичка пыли плавает в темнейших глубинах пустого пространства и подвергается только взаимодействиям с реликтовыми микроволновыми фотонами от Большого взрыва, ее волновая функция будет декогерентной примерно за миллионную долю секунды. Эти числа экстремально малы, что показывает, что декогерентизация для чего-то даже столь мельчайшего, как частица пыли, происходит очень быстро. Для более крупных объектов декогерентизация происходит еще быстрее. Потому не удивительно, что даже если наша вселенная квантовая, мир вокруг нас выглядит так, как он выглядит. (См., например, E. Joos, 'Elements of Environmental Decoherence,' in
Глава 8
1. Чтобы быть более точным, симметрия между законами в Коннектикуте и законами в Нью-Йорке использует
2. Законы движения Ньютона обычно описываются как применимые для 'инерциальных наблюдателей', но если более пристально посмотреть, как такие наблюдатели определяются, получается циклическая ситуация: инерциальные наблюдатели это те наблюдатели, для которых действуют законы Ньютона. Хороший способ подумать о том, что на самом деле происходит, тот, что законы Ньютона притягивают наше внимание к большому и особенно удобному классу наблюдателей: к тем, чье описание движения полностью и количественно подходит под ньютоновскую схему. По определению это и есть инерциальные наблюдатели. На практике инерциальные наблюдатели это те, на кого не действуют силы любого вида, – это означает, наблюдатели, которые не испытывают ускорения. ОТО Эйнштейна, в отличие от этого, применима ко всем наблюдателям, не зависимо от состояния их движения.
3. Если бы мы жили в эпоху, во время которой
4. Космическое микроволновое излучение было открыто в 1964 учеными Лаборатории Белл Арно Пензиасом и Робертом Вильсоном во время тестирования большой антенны, предназначенной для связи со спутниками. Фоновый шум, с которым столкнулись Пензиас и Вильсон, оказалось невозможно удалить (даже после того, как они выбросили птичий помет – 'белый шум' – из внутренностей антенны), и с ключевыми прозрениями Роберта Дике из Принстона и его студентов Петера Ролла и Дэвида Вилинсона вместе с Джимом Пиблсом в конце концов было осознано, что антенна улавливала микроволновую радиацию, которую произвел Большой взрыв. (Важная работа в космологии, которая установила платформу для этого открытия, была проведена ранее Георгием Гамовым, Ральфом Алфером и Робертом ). Как мы обсуждаем далее в последующих главах, фоновая радиация дает нам подлинную картину вселенной, когда ей было около 300 000 лет. Это было, когда электрически заряженные частицы вроде электронов и протонов, которые нарушали движение лучей света, объединились для формирования электрически нейтральных атомов, которые в общем и целом позволили свету путешествовать свободно. С тех самых пор такой древний свет, – произведенный на ранних этапах вселенной, – беспрепятственно путешествовал и сегодня заполнил все пространство микроволновыми фотонами.