99999999999999999999999999999999999999999999999999999999999999999999999999999
— приблизительно 101878 — различных неупорядоченных расстановок страниц.{71} Если вы подбросили страницы в воздух, а затем собрали их в аккуратную стопку, практически всегда они будут сложены беспорядочно, поскольку такие конфигурации имеют более высокую энтропию — имеется намного больше способов получить неупорядоченный результат, чем исключительное расположение, в котором страницы находятся в правильном числовом порядке.
В принципе, мы могли бы воспользоваться законами классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Тогда, снова в принципе, мы могли бы точно предсказать итоговое расположение страниц{72} и поэтому (в отличие от квантовой механики, которую мы игнорируем до следующей главы) могло бы показаться, что нет необходимости полагаться на вероятностные понятия, вроде того, какой результат является более или менее вероятным по сравнению с другими. Но статистические понятия являются как мощными, так и полезными. Если бы
Более того — и это существенно — точный ответ не так уж важен. Когда вы исследуете окончательную стопку страниц, вы гораздо меньше интересуетесь подробностями, какая страница где оказалась, чем главным вопросом, расположились ли страницы в правильном порядке. Если расположились — прекрасно. Вы сможете, как обычно, сесть и продолжить чтение про Анну Павловну и Николая Ильича Ростовых. Но если вы обнаружили, что страницы в неправильном порядке, точные детали расположения страниц, вероятно, будут заботить вас меньше всего. Если вам попалось одно неупорядоченное расположение страниц, вы в значительной степени имеете представление обо всех. За исключением случаев, когда по некоторым странным причинам вы погрязли в мелочах, выясняя, каким страницам пришлось появиться в стопке здесь или там, вы едва ли заметите, что кто-то внёс ещё дополнительную путаницу в то неправильное расположение страниц, которое вы имели в начале. Начальная стопка будет выглядеть неупорядоченной, и ещё раз перемешанная стопка тоже будет выглядеть неупорядоченной. Так что обсуждение на статистическом уровне не только значительно легче провести, но и ответ, который оно даёт, — упорядоченное против неупорядоченного, — более важен по сути, более важен по отношению к тому, на что мы обычно обращаем внимание.
Такая разновидность укрупнённого мышления является центральной для статистических оснований энтропийных рассуждений. Точно так же, как любой лотерейный билет имеет те же шансы на выигрыш, что и любой другой, после многих подбрасываний страниц книги любое частное расположение страниц столь же вероятно, что и любое другое. Что делает статистические рассуждения уместными, так это то, что имеется два
Вы можете предложить сделать более тонкое разграничение между этими двумя классами, рассматривая расположения с несколькими выпадающими из правильного порядка страницами, с неупорядоченными страницами только из первой главы и т. д. Фактически, иногда может оказаться полезным рассмотрение таких промежуточных классов. Однако число возможных расположений страниц в каждом из этих новых подклассов всё ещё крайне мало по сравнению с числом расположений во всём неупорядоченном классе. Например, полное число неупорядоченных расположений, включающих только страницы из первой части романа
Пример с романом
Конечно, делая понятие энтропии точным и универсальным, физическое определение энтропии не имеет дела с подсчётом числа перестановок страниц той или иной книги, которые оставляют её упорядоченной или неупорядоченной. Вместо этого подсчитывается число перестановок фундаментальных составляющих — атомов, субатомных частиц и т. д., — которое оставляет макроскопические, крупномасштабные свойства данной физической системы неизменными. Как и в примере с романом
В качестве физического примера, причём такого, который можно легко проверить, подумаем об упомянутой ранее бутылке колы. Когда углекислый газ, изначально находящийся в бутылке, в конечном счёте распространяется по комнате, имеется
Но когда вы откручиваете крышку бутылки или удаляете заслонку, вы открываете целую новую Вселенную для молекул газа, и через столкновения и соударения они быстро рассеиваются, чтобы эту Вселенную «исследовать». Почему? По тем же самым статистическим причинам, как и в случае страниц романа