т.д.[68]

А если вы обратили внимание и на необычное имя Пафнутий, то вы не одиноки. Примерно в 1971 году на него обратил внимание математик Филип Дж. Дэвис. Дэвис решил исследовать происхождение имени Пафнутий и написал о своих изысканиях исключительно забавную книгу «Нить» (1983). Если очень коротко, то имя Пафнутий имеет коптское происхождение (Papnute — «Божий человек») и проникло в Европу через коптское христианство; такое имя носил один из второстепенных Отцов Церкви в IV столетии. Присутствовавший на Никейском соборе епископ Пафнутий (Paphnutius, как обычно пишется его имя) высказывался против целибата духовенства. К более позднему времени относится вскользь упоминаемый Дэвисом преподобный Пафнутий Боровский, сын знатного татарина; в возрасте 20 лет он удалился в монастырь, где и оставался до своей смерти в 94-летнем возрасте (1478). Вот что говорит агиограф этого Пафнутия: «Он был девственник и аскет и в силу этого великий чудотворец и пророк». (Примерно посередине моей работы над этой главой я получил электронное письмо от читательницы моей веб-колонки с просьбой предложить имя для ее новой собаки. Так что теперь некий Пафнутий гоняет белок где-то на Среднем Западе.)

Наш с вами Пафнутий был также в некотором роде чудотворцем. Он удостоился чести добиться единственных реальных успехов на пути к доказательству ТРПЧ в период между тем, как Дирихле поднял Золотой Ключ в 1837 году, и тем, как Риман повернул его в 1859-м. Занятно, что наиболее оригинальная работа Чебышева оказалась в стороне от основного направления исследований по ТРПЧ и послужила образованию менее значительного бокового течения, которое развивалось само по себе и слилось с главным потоком лишь 100 лет спустя.

Чебышев на самом деле написал две статьи по ТРПЧ. Первая, датируемая 1849 годом, озаглавлена «Об определении числа простых чисел, не превосходящих данной величины»[69]; стоит отметить схожесть с заглавием статьи Римана, написанной 10 лет спустя. В этой работе Чебышев взял Золотой Ключ Эйлера, поиграл с ним немного, примерно как Дирихле за 12 лет до того, и пришел к следующему интересному результату.

Первый результат Чебышева.

Если ?(N) ~ CN/ln N для некоторого фиксированного числа C, то C должно быть равным 1.

Вся проблема, конечно, лежала в этом «если». Чебышев не смог преодолеть эту проблему, как, впрочем, в течение полувека не смог и никто другой.

Вторая статья Чебышева, датируемая 1850 годом, значительно более любопытна. Вместо использования Золотого Ключа она начинается с формулы, доказанной шотландским математиком Джеймсом Стирлингом в 1730 году и выражающей приближенные значения факториальной функции для больших чисел. (Факториал числа N равен 1?2?3?4?…?N. Факториал числа 5, например, равен 120: 1?2?3?4?5 = 120. Обычно для факториала числа N используется обозначение N!. Формула Стирлинга утверждает, что для больших значений N его факториал примерно равен ). Чебышев превратил ее в другую формулу, содержащую ступенчатую функцию — функцию, которая имеет одно значение на некотором интервале аргументов, а затем прыгает к другому значению.

Вооруженный только этими средствами и используя ряд вполне элементарных приемов из дифференциального и интегрального исчисления, Чебышев получил два важных результата. Первый состоит в доказательстве «постулата Бертрана», выдвинутого в 1845 году французским математиком Жозефом Бертраном. Постулат гласит, что между любым числом и его удвоением (например, между 42 и 84) всегда найдется простое число. Второй результат Чебышева таков.

Второй результат Чебышева.

?(N) не может отличаться от N/ln N более чем примерно на 10% в большую или меньшую сторону.

Вторая статья Чебышева важна в двух отношениях. Прежде всего, использование в ней ступенчатой функции могло вдохновить Римана на использование подобной же функции в его работе 1859 года (об этом будет подробно рассказано ниже). Не подлежит сомнению, что Риман знал о работе Чебышева; имя российского математика появляется в записках Римана (где оно пишется как «Tschebyschev»).

Но большего внимания заслуживает сама идея подхода, развитого Чебышевым во второй статье. Он получил свои результаты без использования теории функций комплексной переменной. У математиков есть короткий способ для выражения этого факта: они говорят, что методы Чебышева «элементарны». Риман в своей работе 1859 года не использовал элементарные методы. Для решения исследуемой им проблемы он привлек всю мощь теории функций комплексной переменной. Полученные результаты оказались столь замечательными, что другие математики последовали его примеру, и в конце концов ТРПЧ была доказана с использованием неэлементарных методов Римана.

Вопрос о том, можно ли доказать ТРПЧ элементарными методами, оставался открытым, но по прошествии нескольких десятилетий общее мнение утвердилось в том, что это невозможно. Так, в тексте Алберта Ингэма 1932 года «Распределение простых чисел» автор сообщает в подстрочном примечании: «Доказательство теоремы о распределении простых чисел „в терминах вещественных переменных“, т.е. доказательство, не вовлекающее, будь то явным или неявным образом, понятие аналитической функции комплексной переменной, никогда не было обнаружено, и теперь понятно, почему так и должно быть».

Ко всеобщему изумлению, такое доказательство было обнаружено в 1949 году Атле Сельбергом — норвежским математиком, работавшим в Институте высших исследований в Принстоне, штат Нью- Джерси.[70] История получения этого результата неоднозначна, поскольку Сельберг предварительно сообщил о своих, еще неокончательных, идеях эксцентричному венгерскому математику Паулю Эрдешу, который использовал их и получил свое собственное доказательство одновременно с Сельбергом. После смерти Эрдеша в 1996 году были написаны две его популярные биографии, и любознательный читатель может найти полный отчет об этой запуганной истории в любой из них. Доказательство называется «доказательством Эрдеша-Сельберга» в Венгрии и «доказательством Сельберга» за ее пределами.{A2}

В дополнение к своим исследованиям Чебышев был замечательным научным руководителем, умевшим увлечь своими темами. Его ученики несли идеи и методы учителя в другие российские университеты, повсюду пробуждая интерес и поднимая уровень преподавания. Сохраняя активность и на восьмом десятке лет, Чебышев был также оригинальным изобретателем, сконструировавшим несколько арифмометров, которые сохранились до нашего времени в музеях Москвы и Парижа. В его честь назван лунный кратер, расположенный около 135°W 30°S.[71]

IV.

Я не могу расстаться с Чебышевым, не упомянув, по крайней мере мимоходом, о его знаменитом отклонении — знаменитом, я хочу сказать, среди специалистов по теории чисел.

Если разделить простое число (отличное от 2) на 4, то остаток должен быть или 1, или 3. Демонстрируют ли простые числа какое-нибудь отклонение? Да: в пределах до p = 101 имеются 12 простых, которые дают остаток 1, и 13 тех, что дают остаток 3. В пределах до p = 1009 счет равен 81 к 87. В пределах до p = 10 007 счет равен 609 к 620. Ясно видно, что остаток 3 встречается не намного, но все же отчетливо чаще, чем остаток 1. Это дает пример чебышевского отклонения, первое замечание Чебышева о котором относится к 1853 году. Отклонение, которое таким образом выказывают остатки, в конце концов нарушается при p = 26 861, когда простые, дающие остаток 1, на короткое время вырывают первенство. Однако это не более чем единовременное отклонение: настоящая первая зона, где происходит нарушение, составлена из 11 простых чисел от p = 616 877 до p = 617 011. Простые с остатком 1

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату