составляет 0,6931471805599453…, но
Рассмотрим, например, такую перестановку членов ряда: 1 ? 1/2 ? 1/4 + 1/3 ? 1/6 ? 1/8 + 1/5 ? 1/10 ? …. То же самое, но с расставленными скобками: (1 ? 1/2) ? 1/4 + (1/3 ? 1/6) ? 1/8 + (1/5 ? 1/10) ? …, т.е. 1/2(1 ? 1/2 + 1/3 ? 1/4 + 1/5 ? …). Сумма ряда с переставленными членами равна половине сумм исходного ряда![77]
Ряд из выражения (9.4) — не единственный, обладающий таким настораживающим свойством. Сходящиеся ряды разбиваются на две категории: те, у которых есть такое свойство, и те, у которых его нет. Ряды, подобные рассмотренному, сумма которых зависит от порядка суммирования, называются «условно сходящимися». Ряды, ведущие себя получше и сходящиеся к одному и тому же пределу независимо от того, как переставлены слагаемые, называются «абсолютно сходящимися». Большая часть важных в анализе рядов сходятся абсолютно. Тем не менее для нас первоочередной интерес будет представлять еще один ряд, сходящийся лишь условно, подобно ряду из выражения (9.4). Мы встретимся с ним в главе 21.
Глава 10. Доказательство и поворотная точка
Работа 1859 года «О числе простых чисел, не превышающих данной величины» была единственной публикацией Бернхарда Римана по теории чисел, а также единственной из всех написанных им работ, которая вовсе не содержала никаких геометрических идей.
Эта блестящая и основополагающая статья была, однако, неудовлетворительна в некоторых отношениях. Прежде всего, имелась сама великая Гипотеза, которую Риман оставил висеть в воздухе (где она пребывает и поныне). Его собственные слова после формулировки утверждения, эквивалентного Гипотезе, были такими:
Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток (einigen fluchtigen vergeblichen Versuchen) я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования.
Вполне разумно. Поскольку Гипотеза не имела решающего значения для развиваемых им идей, Риман оставил ее без доказательства. Но это был наименьший из недостатков той статьи. Некоторые другие вещи в ней утверждаются, но их тщательного доказательства не приводится — причем это относится и к основному результату работы! (Сам этот результат мы рассмотрим в одной из последующих глав.)
Бернхард Риман являл собой весьма чистый случай
Риман воплощал в себе полную противоположность. Если Вейерштрасс — это скалолаз, методично отвоевывающий у утеса каждый дюйм, то Риман — скорее акробат на трапеции, бесстрашно взлетающий в воздух в уверенности (которая зрителю может показаться опасным самообманом), что, когда он достигнет точки своего назначения где-то посреди неба, там будет за что ухватиться. Совершенно ясно, что Риман обладал прекрасно развитым зрительным воображением, а также и то, что его мозг совершал прыжки к результатам настолько мощным, элегантным и плодотворным, что он не мог заставить себя остановиться для доказательства. Он живо интересовался философией и физикой, и набор концепций, накопленных им в результате длительного знакомства с этими двумя дисциплинами, — поток ощущений через наши органы чувств, организация этих ощущений в формы и понятия, поток электричества через проводник, движения жидкостей и газов — просматривается за фасадом его математики.
Поэтому работу 1859 года почитают не за ее логическую чистоту и уж заведомо не за ее ясность, а за одну лишь оригинальность примененного Риманом метода и за величайший размах и мощь его результатов, которые уже обеспечили и продолжают обеспечивать его коллег-математиков материалом на десятилетия работы.
О том, что последовало за статьей 1859 года, пишет в своей книге о дзета-функции[78] Хэролд Эдвардс:
В течение первых 30 лет после опубликования статьи Римана в этой области не наблюдалось практически никакого прогресса. Это выглядело так, как будто именно столько времени потребовалось математическому миру для переваривания римановых идей. Затем в течение промежутка примерно в 10 лет Адамар, фон Мангольдт и де ля Валле Пуссен добились успехов в доказательстве как основной формулы Римана для
Работа Римана «О числе простых чисел, не превышающих данной величины» имела прямое отношение к попыткам доказать Теорему о распределении простых чисел (ТРПЧ). Если бы выяснилось, что Гипотеза Римана верна, то ТРПЧ была бы получена в качестве следствия. Однако Гипотеза представляет собой намного более сильный результат, чем ТРПЧ, и последнюю можно было бы доказать, исходя и из более слабых предпосылок. Основное значение работы Римана для доказательства ТРПЧ состояло в том, что она предоставила средства — результаты, позволяющие глубоко проникнуть в суть аналитической теории чисел, — с помощью которых и была проложена дорога к доказательству.
Это доказательство появилось в 1896 году. Период, прошедший между выходом работы Римана и доказательством ТРПЧ, был отмечен следующими вехами.
• Вырос объем практических знаний о простых числах. Были опубликованы более длинные таблицы простых чисел, среди которых выделяются таблицы Кулика, представленные Венской академии наук в 1867 году, — там были приведены делители всех чисел до 100 330 200. Эрнст Майсель разработал хитрый способ вычисления
• В 1874 году Франц Мертенс добился скромного результата, касающегося чисел обратных к простым, используя методы, которые заимствовали кое-что как у Римана, так и у Чебышева. Ряд 1/2 + 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + … +