Оставим ? большое. Теперь перед нами функция Мебиуса. Есть несколько способов ввести функцию Мебиуса. Подойдем к ней со стороны Золотого Ключа.

Возьмем Золотой Ключ и перевернем его вверх ногами, т.е. возьмем обратную величину к каждой стороне равенства в выражении (7.2). Очевидно, если A = B и при этом ни A, ни B не равны нулю, то 1/A = 1/B. Получаем (15.1)

Теперь раскроем скобки в правой части. На первый взгляд, это сильно сказано: как-никак, сомножителей в скобках бесконечно много. На самом деле процедура требует несколько большего внимания и обоснования, чем мы можем здесь ей уделить, но в конце концов мы получим полезный и верный результат, так что в данном случае цель оправдывает средства.

Раскрытие скобок все мы изучали в курсе элементарной алгебры. Чтобы перемножить (а + b)(p + q), сначала умножаем a на (p + q), что дает ар + aq. Затем умножаем b на (p + q), что дает bp + bq. А потом, поскольку в скобках у нас a плюс b, мы складываем вместе то, что получилось, и окончательный ответ имеет вид ap + aq + bp + bq. Если надо перемножить три скобки (а + b)(p + q)(u + v), то повторение этих действий дает apu +aqu + bpu + bqu + apv + aqv + bpv + bqv. Перемножение четырех скобок (а + b)(p + q)(u + v)(x + у) дает

apux + aqux + bpux + bqux + apvx + aqvx + bpvx + bqvx + apuy + aquy + bpuy + bquy + apvy + aqvy + bpvy + bqvy. (15.2)

Грандиозность того, что получается, начинает внушать некоторые опасения. А ведь нам предстоит перемножить бесконечное число скобок! Фокус состоит в том, чтобы посмотреть на это дело глазами математика. Из чего составлено выражение (15.2)? Ну, это сумма некоторого числа членов. Как эти члены выглядят? Выберем наугад какой-нибудь один из них, скажем aqvy. Сюда входит a из первой скобки, q из второй, v из третьей и y из четвертой. Это произведение, составленное из чисел, выбранных по одному из каждой скобки. И все выражение целиком получается в результате всех возможных комбинаций того, как мы выбираем эти числа из скобок.

Как только вы смогли это увидеть, перемножение бесконечного числа скобок больше не проблема. В ответе будет сумма — разумеется, бесконечная — членов, каждый из которых получен путем выбора одного числа из каждой скобки и перемножения всего, что выбрали. Если сложить результаты всех таких возможных выборов, то и получится ответ. Однако в том виде, как эта процедура описана, она все еще выглядит несколько устрашающей. Согласно сказанному, каждый член в нашей бесконечной сумме есть бесконечное произведение. Да, так оно и есть, но, поскольку каждая скобка в правой части выражения (15.1) содержит 1, наша жизнь делается приятнее за счет того, что мы будем выбирать бесконечное число единиц и лишь конечное число не-единиц. В конце концов, поскольку каждый не-единичный член в каждой скобке есть число между ?1/2 и 0, перемножение бесконечно большого числа таких членов дает результат, величина которого (я имею в виду — без учета знака) заведомо не больше, чем (1/2)?, а это равно нулю! Теперь смотрите, как я построю бесконечную сумму.

Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1?1?1?1?1?…, значение которого есть, конечно, просто 1.

Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем . Это даст бесконечное произведение ?1?1?1?1?…, которое равно просто .

Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем . Это даст бесконечное произведение 1??1?1?1?…, что равно просто .

Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n-й, мы получим слагаемое равное , где p — n-е простое число. Итак, получилась бесконечная сумма вида (15.3):

Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов, получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали из первой скобки, из второй и 1 из всех остальных. Это дает ??1?1?1?…, что равно . Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобки и из шестой, а единицы из всех остальных, получаем член, равный .

(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (x?y)n = xn?yn.)

Так что наряду с членами, уже собранными в выражении (15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:

где каждое число во второй строке есть произведение двух различных простых.

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1??1?1???1?1?…, из чего возникает .Теперь результат разрастается до

где каждое число в третьей строке есть произведение трех различных простых.

В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1) превращается в следующее (15.4):

Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.

Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868).[137]

Рисунок 15.4. Лента Мебиуса и муравей на ней.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату