тонко. На рисунке 17.1, например, представлена арифметика циферблата — сложение и умножение — для циферблата с четырьмя отметками (т.е. 0, 1, 2 и 3). Эта система чисел и правил интересна и полезна, но она не является полем, поскольку нельзя разделить 1 ни на 3, ни на 2. (Если бы можно было разделить 1 на 2, то уравнение 1 = 2?
+ | 0 | 1 | 2 | 3 | ? | 0 | 1 | 2 | 3 | |
0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | |
1 | 1 | 2 | 3 | 0 | 1 | 0 | 1 | 2 | 3 | |
2 | 2 | 3 | 0 | 1 | 2 | 0 | 2 | 0 | 2 | |
3 | 3 | 0 | 1 | 2 | 3 | 0 | 3 | 2 | 1 |
Рисунок 17.1. Сложение и умножение на циферблате с четырьмя отметками (другими словами, сложение и умножение выполняются по обычным правилам, после чего берутся остатки по модулю 4).
Конкретное кольцо, показанное на рисунке 17.1, имеет официальное обозначение Z/4Z. Должен сознаться, что мне такое обозначение никогда не нравилось, так что на правах автора я изобрету для него свое собственное обозначение: CLOCK4.[158] {4} Ясно, что можно построить такое кольцо для любого натурального числа
Но поле
+ | 0 | 1 | 2 | 3 | ? | 0 |