Никого нет.

Здание тепловой подстанции посреди двора построено не в виде голого куба, как обычно, а со сводчатыми нишами в стенах и от этого напоминает древнерусский храм, только без башенки и купола посередине.

Очки остались дома, и тепловая подстанция будто бы нарисована передо мной расплывчатой акварелью. Вообще, мне сейчас без очков хорошо — волнительно и неустойчиво, словно я с похмелья выпил крепкого кофе.

Мимо идет серый котенок, идет куда-то вбок, во тьму помойки.

Подзываю его, беру на руки и — теплого, урчащего — прижимаю к груди. Мне кажется, что вокруг, во всем районе, нет больше живых существ, кроме котенка. И я хочу что-то исследовать, что-то изменить и шепчу ему:

— Не погибнешь ты вместе с телом, не бойся...

Пытаясь вообразить загробную жизнь Лидии Чарской, я смотрю на светящиеся окна высотного дома напротив и глажу котенка по макушке.

Апология математики, или О математике как части духовной культуры

Глава 7. Парадокс Галилея, эффект Кортасара и понятие количества

В детстве меня иногда посещал следующий кошмар. Мне представлялось большое число стульев (наглядно — в виде стульев в партере летнего театра). И вот их начинают пересчитывать. Получают некоторое число. Затем пересчитывают в другом порядке и получают другое число. Кошмар заключался в том, что при обоих подсчётах не было ошибки.

Только в университете я узнал, что невозможность описанного только что явления составляет предмет особой, и притом не слишком просто доказываемой, теоремы математики. А потом я прочёл “Записи в блокноте” Хулио Кортасара. Там говорилось о произведённой в 1946 или 1947 году операции по учёту пассажиров на одной из линий метро Буэнос-Айреса: “<...>Было установлено точное количество пассажиров, в течение недели ежедневно пользующихся метро. <...> Учёт производился с максимальной строгостью у каждого входа и выхода. <...> В среду результаты исследований были неожиданными: из вошедших в метро 113 987 человек на поверхность вышли 113 983. Здравый смысл подсказывал, что в расчётах произошла ошибка, поэтому ответственные за проведение операции объехали все места учёта, выискивая возможные упущения. <...> Нет необходимости добавлять, что никто не обнаружил мнимой ошибки, из-за которой предполагались (и одновременно исключались) четверо исчезнувших пассажиров. В четверг все было в порядке: сто семь тысяч триста двадцать восемь жителей Буэнос-Айреса, как обычно, появились, готовые к временному погружению в подземелье. В пятницу (теперь, после принятых мер, считалось, что учёт ведется безошибочно) число людей, вышедших из метро, превышало на единицу число вошедших”.

При дальнейшем чтении я, к сожалению, обнаружил, что Кортасар предлагает некое рациональное объяснение изложенному им парадоксу; вот тут очевидное отличие Кортасара от его старшего соотечественника Борхеса (влияние коего Кортасар, несомненно, испытал): Борхес не стал бы искать рационального оправдания. “К сожалению” сказано потому, что поначалу мне показалось, что здесь выражена глубокая идея о возможности, хотя бы в фантазии, следующего эффекта: при очень большом количестве предметов это количество не меняется при добавлении или убавлении сравнительно небольшого их числа. И хотя, повторяю, приписывание Кортасару открытия и опубликования этого воображаемого эффекта оказалось ошибочным, я всё же буду называть его для краткости эффектом Кортасара; тем более что такое название полностью соответствует так называемому принципу Арнольда, установленному нашим выдающимся математиком Владимиром Игоревичем Арнольдом: если какое-либо явление или утверждение носит чьё-либо имя, то это означает, что оно не имеет своим автором носителя этого имени. Предположение, что эффект Кортасара имеет отношение не только к воображению, но и к реальности, может показаться бредом, но, как будет видно ниже, сформулированное в нём явление действительно имеет место, если очень большое становится бесконечным.

Бесконечное вообще следует — в понятийном аспекте — трактовать как упрощённое представление о конечном, но очень большом. А бывает ли вообще бесконечное количество предметов? Бывает ли оно в физической реальности — этого никто не знает. Количество звёзд во Вселенной — конечно оно или бесконечно? Мнения расходятся, и проверить, кто прав, довольно затруднительно. В реальности же идеальной — да, бывает. Например, бесконечен натуральный ряд, то есть ряд натуральных чисел 1, 2, 3, 4, … . Предупредим для ясности, что в этой главе, вплоть до особого распоряжения, никаких других чисел рассматриваться не будет, а потому натуральные числа будут именоваться просто числами .

Натуральный ряд представляет собой, пожалуй, наиболее простой пример бесконечной совокупности, или, как говорят математики, бесконечного множества . И уже в нём можно наблюдать некоторые парадоксальные явления, в частности — нарушение

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату