Удалим из матрицы сберегательный счет и повторим процедуру. На этот раз мы рассмотрим только четыре рыночные системы (Toxico, Incubeast, LA Garb и NIC) и ограничим сумму весов числом 9. Мы должны поступить таким образом, потому что, как только в матрице появляется компонент с нулевой дисперсией и AHPR большим 1, мы получаем оптимальный портфель, состоящий из одного компонента, а для соответствия требуемому Е будет меняться только рычаг этого компонента.
Решив матрицу, мы увидим, что уравнения с (7.06а) по (7.06г) удовлетворяются при Е, равном 0,2457. Так как это геометрический оптимальный портфель, V также равно 0,2457. Получившееся среднее геометрическое равно 1,142833. Портфель будет выглядеть следующим образом:
Toxico 102,5982%
Incubeast 49,00558%
LA Garb 40,24979%
NIC 708,14643%
Возникает резонный вопрос: «Каким образом сумма весов компонентов может быть больше 100%?» Мы ответим на этот вопрос, но несколько позже.
Если NIC не является одним из компонентов геометрического оптимального портфеля, то следует поднять ограничение суммы весов S до уровня, когда NIC станет одним из компонентов геометрического оптимального портфеля. Вспомните, что если в портфеле есть только два компонента, причем ко эффициент корреляции между ними равен -1 и оба компонента имеют положительное математическое ожидание, тогда от вас потребуется финансирование бесконечного числа контрактов, поскольку такой портфель никогда не будет проигрывать. Следует также отметить, что чем ниже коэффициенты корреляции между компонентами в портфеле, тем выше процент, требуемый для инвестирования в эти компоненты. Разность между инвестированными процентными долями и ограничением суммы весов S должна быть заполнена NIC. Если NIC отсутствует среди компонентов геометрического оптимального портфеля, значит портфель работает при ограниченном S и поэтому не может считаться неограниченным геометрическим оптимальным портфелем. Так как вы не будете в действительности инвестировать в NIC, то не имеет значения, каков его вес, пока он является частью геометрического оптимального портфеля.
Оптимальное f и оптимальные портфели
Из главы 6 мы узнали, что для каждого компонента портфеля необходимо определить ожидаемую прибыль (в процентах) и ожидаемую дисперсию прибылей. В общем случае, ожидаемые прибыли (и дисперсии) рассчитываются на основе текущей цены акции. Затем для каждого компонента определяется его оптимальный процент (вес). Далее, для расчета суммы инвестиций в тот или иной компонент, баланс на счете умножается на вес компонента, и затем для определения количества акций для покупки эта сумма в долларах делится на текущую цену одной акции.
Так в общих чертах можно описать современную стратегию создания портфеля. Но это не совсем оптимальный вариант, и в этом состоит одна из основных идей книги. Вместо определения ожидаемой прибыли и дисперсии прибыли на основе текущей цены компонента, ожидаемая прибыль и дисперсия прибылей для каждого компонента должны определяться на основе долларового оптимального f. Другими словами, в качестве входных данных вы должны использовать арифметическое среднее HPR и дисперсию HPR. Используемые HPR должны быть привязаны не к количеству сделок, а к фиксированным интервалам времени (дни, недели, месяцы, кварталы или годы), как в главе 1 для уравнения (1.15).
где А = сумма в долларах, выигранная или проигранная в этот день;
В = оптимальное f в долларах.
Не обязательно использовать дневные данные, можно использовать любой временной период, при условии, что он одинаковый для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициентов корреляции между HPR различных компонентов). Скажем, рыночная система с оптимальным f= 2000 долларов за день заработала 100 долларов. Тогда для такой рыночной системы дневное HPR = 1,05.
Если вы рассчитываете оптимальное f на основе приведенных данных, то для получения дневных HPR следует использовать уравнение (2.12);
где D$ = изменение цены 1 единицы в долларах по сравнению с прошлым днем, т.е. (закрытие сегодня - закрытие вчера) * доллары за пункт;
f$ = текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является закрытие последнего дня.
После того как вы определите оптимальное f в долларах для 1 единицы компонента, надо взять дневные изменения баланса на основе 1 единицы и преобразовать их в HPR с помощью уравнения (1.15). Если вы используете приведенные данные, воспользуйтесь уравнением (2.12). Когда вы комбинируете рыночные системы в портфеле, все они должны иметь одинаковый формат, т.е. если данные приведены к текущим ценам, то оптимальные f и побочные продукты также должны быть приведенными.
Вернемся к арифметическому среднему HPR. Вычитая единицу из арифметического среднего, мы получим ожидаемую прибыль компонента. Дисперсия дневных (недельных, месячных и т.д.) HPR даст исходную дисперсию для матрицы. Наконец, для каждой пары рассматриваемых рыночных систем рассчитаем коэффициенты корреляции между дневными HPR.
Теперь можно сделать важное заключение.
Вернемся к вопросу о том, каким образом возможно инвестировать больше 100% в определенный компонент. Одно из основных утверждений этой книги состоит в том, что вес и количество не одно и то же. Вес, который вы получаете при нахождении геометрического оптимального портфеля, должен быть отражен в оптимальных f компонентов портфеля. Для этого следует разделить оптимальное f каждого компонента на его соответствующий вес. Допустим, у нас есть следующие оптимальные f (в долларах):
Toxico $2500
Incubeast $4750
LA Garb $5000
(Отметьте, что если вы приводите данные к текущей цене и, следовательно, получаете приведенное оптимальное f и побочные продукты, тогда ваше оптимальное f в долларах будет меняться каждый день в зависимости от цены закрытия предыдущего дня на основании уравнения [2.11].)
Теперь разделим f на соответствующие веса:
Toxico $2500 / 1,025982 = $2436,69
Incubeast $4750 / 0,4900558 = $9692,77
LA Garb $5000 / 0,4024979 = $12 422,43
«Минутку, — можете возразить вы. — Если мы изменим оптимальный портфель посредством оптимального f, будет ли он оптимальным. Если новые значения относятся к другому портфелю, то ему